The Effect of Uniform Magnetic Field on Pressurized FG Cylindrical and Spherical Vessels

The Effect of Uniform Magnetic Field on Pressurized FG Cylindrical and Spherical Vessels

The stress analysis of functionally graded thick hollow cylindrical and spherical pressure vessels under the effectof uniform magnetic field are examined. These pressure vessels are designed in such a way that the materialproperties and magnetic permeability are exponentially graded in radial direction, provided that the innersurface is pure metal and the outer surface is pure ceramic. The differential equations with variable coefficientsobtained under these conditions are handled by both Complementary Functions Method and PseudospectralChebyshev Method. Benchmark solutions available in the literature for some special cases are used to confirmthe results. The effects of different mixture and uniform magnetic field on stresses and displacement distribution are shown in graphical form.

___

  • [1] Yamanouchi, M., Koizumi, M., Hirai, T. and Shiota, I. (1990). FGM ‘90. Proceedings of the 1st International Symposium on Functionally Gradient Materials. 8-9 October, Sendai.
  • [2] Koizumi, M. (1993). The concept of FGM, Ceramic Transactions, Functionally Gradient Materials, 34:3–10.
  • [3] Erdogan, F. (1995). Fracture mechanics of functionally graded materials. Composite Engineering. 5(7):753–770, DOI:10.1016/0961- 9526(95)00029-M.
  • [4] Horgan, C.O., Chan, A.M., The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials, Journal of Elasticity, 55, 43–59, 1999, DOI:10.1023/A:1007625401963.
  • [5] Tutuncu, N. and Ozturk, M. (2001). Exact solutions for stresses in functionally graded pressure vessels. Composites: Part B, 32:683– 686, DOI:10.1016/S1359-8368(01)00041-5.
  • [6] Tutuncu, N. (2007). Stresses in thick-walled FGM cylinders with exponentially-varying properties. Engineering Structures, 29:2032– 2035, DOI:10.1016/j.engstruct.2006.12.003.
  • [7] Yarımpabuc, D., Eker, M. and Celebi, K. (2018). Mechanical behavior of functionally graded pressure vessels under the effect of Poisson’s ratio. European Mechanical Science, 2(2):52–59, DOI: 10.26701/ ems.360134.
  • [8] Eker, M., Yarımpabuc, D., Celebi, K., Yıldırım, A. (2017). Stress analysis of functionally graded cylindrical pressure vessels by pseudospectral chebyshev method. IAREC 2017 Conference Proceedings, p. 481.
  • [9] Eker M., Yarımpabu¸c, D., Celebi K., Yıldırım, A. (2017). Stress analysis of functionally graded spherical pressure vessels by pseudospectral chebyshev method. IMSEC 2017 Conference Proceedings, p. 417.
  • [10] Chen, Y.Z. and Lin, X.Y. (2008). Elastic analysis for thick cylindrical and spherical pressure vessels made of functionally graded materials. Computational Material Science, 44(2):581–587, DOI:10.1016/j. commatsci.2008.04.018.
  • [11] Li, X.F., Peng, X.L. and Kang, Y.A. (2009). Pressurized hollow spherical vessels with arbitrary radial nonhomogeneity. AIAA Journal, 47(9):2263–2265, DOI:10.2514/1.41995.
  • [12] Nejad, M.Z. and Gharibi, M. (2014). effect of material gradient on stresses of thick fgm spherical pressure vessels with exponentially-varying properties. Journal of Advanced Materials and Processing, 2(3):39-46.
  • [13] Temel, B, Yildirim S, Tutuncu N. (2014). Elastic and viscoelastic response of heterogeneous annular structures under Arbitrary Transient Pressure. International Journal of Mechanical Sciences, 89:78-83, DOI: 10.1016/j.ijmecsci.2014.08.021.
  • [14] Baş, H., Keles I. (2015). Novel approach to transient thermal stress in an annular fin. Journal of Thermophysics and Heat Transfer, 29(4), 705-710, DOI:10.2514/1.T4535.
  • [15] Baba, S., Keles I. (2016). A novel approach to forced vibration behavior of thick-walled cylinders. International Journal of Pressure Vessels and Piping, 137, 22-27, DOI:10.1016/j.ijpvp.2015.04.015.
  • [16] Keles, I. (2016). Novel approach to forced vibration behavior of anisotropic thick-walled spheres. AIAA Journal, 54(4), 1438-1442, DOI:10.2514/1.J054322.
  • [17] Temel, B., Aslan, T.A., and Noori, A.R., (2017). An efficient dynamic analysis of planar arches. European Mechanical Science, 1(3), 82-88, DOI:10.26701/ems.325808.
  • [18] Arslan, E. (2017). Tabakalı ve fonksiyonel olarak kademelendirilmis¸ küresel basınç kapları üzerine analiz. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(1), 24–35, DOI:10.5505/pajes.2016.56688.
  • [19] Noori, A.R., Aslan T.A., Temel, B. (2018). An efficient approach for in-plane free and forced vibrations of axially functionally graded parabolic arches with nonuniform cross section. Composite Structure, 200:701–710, DOI:10.1016/j.compstruct.2018.05.077.
  • [20] Yildirim, S. and Tutuncu, N. (2019). Effect of magneto-thermal loads on the rotational instability of heterogeneous rotors, AIAA Journal, 57(5):2069-2074, DOI:10.2514/1.J058124.
  • [21] Dai, H.L., Fu, Y.M. and Dong, Z.M. (2006). Exact solutions for functionally graded pressure vessels in a uniform magnetic field. International Journal of Solids and Structures, 43:5570–5580, DOI:10.1016/j. ijsolstr.2005.08.019.
  • [22] Dai, H.L., Xiao, X. and Fu, Y.M. (2010). Analytical solutions of stresses in functionally graded piezoelectric hollow structures. Solid State Communications, 150:763–767, DOI:10.1016/j.ssc.2010.01.028.
  • [23] Tutuncu, N. and Temel, B. (2009). A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres. Composite Structure, 91(3):385–390, DOI:10.1016/j.compstruct.2009.06.009.
  • [24] Tutuncu, N. and Temel, B. (2013). An efficient unified method for thermoelastic analysis of functionally graded rotating disks of variable thickness. Mechanics of Advanced Materials and Structures, 30(1):38–46, DOI: 10.1080/15376494.2011.581413.
  • [25] Gottlieb, D. (1981). The stability of pseudospectral-Chebyshev methods. Mathematics of Computation, 36(153):107–118, DOI:10.2307/2007729. [26] Trefethen, L.N. (2000). Spectral methods in Matlab, SIAM, Philadelphia, PA.