Thermal and Economic Study of a Combined Power and Cooling Cycle

An energy crisis has become a global problem which restricts the sustainable growth recently. For this reason, waste heat recovery from different thermal systems has become so important. There are many ways to utilize the waste heat, and absorption cooling systems are one of the best ways to use waste energy. On the other hand, Power plants are at the forefront of industries where energy consumption is most intense. For this reason, improving the performance of these plants will save energy, water, as well as contribute to the prevention of environmental risks. In this study, a new and a suitable absorption cooling system was proposed for recovering the waste heat from drainage tanks in AL-Zara steam plant in Hama in Syria. In addition, thermal and economic analyses were applied to study the feasibility assessment of using waste heat based on the measured data from Al-Zara steam power plant. The absorption cooling cycle of the drainage tank water works by NH3-NaScN as a working solution, which achieves the highest coefficient of performance (COP) at available thermal conditions where reaches to (0.49). The profitability in order to three cooling units reaches to (37206 €), compared with the compression cooling cycle that is similar it in the capacity

___

  • Kaynakli O. and Kilic M. (2007). Theoretical study on the effect of operating conditions on performance of absorption refrigeration system. Energy Conversion and Management, 48(2): 599-607.
  • Saravanan R. and Maiya M. P. (1998). Thermodynamic comparison of water-based working fluid combinations for a vapour absorption refrigeration system. Applied Thermal Engineering, 18(7): 553-568.
  • Sozen A., (2001) “Effect of heat exchangers on performance of absorption refrigeration systems,” (in English), Energy conversion and management., vol. 42, no. 14, pp. 1699-1716, 2001.
  • Sun D.-W. (1998). Comparison of the performances of NH 3-H 2O, NH 3-LiNO 3 and NH 3-NaSCN absorption refrigeration systems. Energy Conversion and Management, 39(5): 357-368.
  • Al-Ugla, A. A., El-Shaarawi, M. A. I., & Said, S. A. M. (2015). Alternative designs for a 24-hours operating solar-powered LiBr–water absorption air-conditioning technology. International Journal of Refrigeration, 53: 90-100.
  • Khaliq, A., Agrawal, B. K., & Kumar, R. (2012). First and second law investigation of waste heat based combined power and ejector-absorption refrigeration cycle. International Journal of Refrigeration, 35(1): 88-97.
  • Vidal, A., Best, R., Rivero, R., & Cervantes, J. (2006). Analysis of a combined power and refrigeration cycle by the exergy method. Energy, 31(15): 3401-3414.
  • Khaliq, A. (2009). Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. International Journal of Refrigeration, 32(3): 534-545.
  • Sierra, F. Z., Best, R., & Holland, F. A. (1993). Experiments on an absorption refrigeration system powered by a solar pond. Heat Recovery Systems and CHP, 13(5): 401-408.
  • Ajib, S., & Schultheis, P. (1998). Untersuchungsergebnisse einer solarthermisch betriebenen Absorptionskälteanlage. TAB. Technik am Bau, (2): 49-54.
  • Jakob U., Schneider D., Eicker U., and Bauingenieurwesen B., (2004) “Entwicklung einer Diffusions -Absorptionskältemaschine kleiner Leistung (2, 5 kW),” in Band Drittes Symposium Solares Kühlen in der Praxis, HfT Stuttgart, 2004, pp. 26-27.
  • Kunze, G. (2000). Efficient solar cooling with an improved ammonia-absorption system. Renewable Energy World, 3(6), 111-112.
  • Safarik, M., Gramlich, K., & Schammler, G. (2002, June). Betriebserfahrungen der solar angetriebenen 15 kW NH3/H2O–Absorptionskä lteanlage am Technologiezentrum Kothen. In Tagungsband Zweites Symposium–Solares Kuhlen in der Praxis, Vero ffentlichungen der Fachhochschule Stuttgart-Hochschule fu r Technik (Vol. 56, pp. 145-175).
  • Xiaohong, L. (2004). The development of an air-cooled absorption chiller concept and its integration in CHP systems (Doctoral dissertation, Dissertation University of Maryland, College Park).
  • Schweigler, C., Costa, A., Högenauer-Lego, M., Harm, M., & Ziegler, F. (2002, June). Entwicklung und Betrieb einer 10 kW H2O/LiBr-Absorptionskältemaschine. In Tagungsband: Zweites Symposium „Solares Kühlen in der Praxis “, Stuttgart (p. 110ff).
  • Alizadeh, S., Bahar, F., & Geoola, F. (1979). Design and optimisation of an absorption refrigeration system operated by solar energy. Solar Energy, 22(2), 149-154. Chen, G., & Hihara, E. (1999). A new absorption refrigeration cycle using solar energy. Solar Energy, 66(6), 479-482.
  • Wang, J., Chen, G., & Jiang, H. (1998). Study on a solar‐driven ejection absorption refrigeration cycle. International journal of energy research, 22(8): 733-739. Wijeysundera, N. E. (1997). Thermodynamic performance of solar-powered ideal absorption cycles. Solar energy, 61(5): 313-319.
  • Pilatowsky, I., Rivera, W., & Romero, R. J. (2001). Thermodynamic analysis of monomethylamine–water solutions in a single-stage solar absorption refrigeration cycle at low generator temperatures. Solar energy materials and solar cells, 70(3): 287-300.
  • De Lucas, A., Donate, M., Molero, C., Villaseñor, J., & Rodrıguez, J. F. (2004). Performance evaluation and simulation of a new absorbent for an absorption refrigeration system. International Journal of Refrigeration, 27(4): 324-330.
  • Wijeysundera, N. E. (2000). An irreversible-thermodynamic model for solar-powered absorption cooling systems. Solar Energy, 68(1): 69-75.
  • Alizadeh, S. (2000). Multi-pressure absorption cycles in solar refrigeration:: A technical and economical study. Solar energy, 69(1): 37-44.
  • Schweigler, C. (2004, April). Solare Klimatisierung mit zweistufigem Absorptionskälteanlage. In Band Drittes Symposium Solares Kuhlen in der Praxis (pp. 211-229).
  • Lokurlu, A., & Richarts, F. (2002, June). Zweistufige Absorptionskältemaschine mit Parabolrinnenkollektoren. In Band Zweites Symposium Solares Kühlen in der Praxis (pp. 98-109).
  • Said, S. A., El-Shaarawi, M. A., & Siddiqui, M. U. (2012). Alternative designs for a 24-h operating solar-powered absorption refrigeration technology. International journal of refrigeration, 35(7): 1967-1977.
  • ---(2010). The archive and records of the AL-ZARA Thermal Power Plant
  • El-Sayed, M. M., Fathy, A. K., & Mogahed, S. A. (1998). Computational Models of Solar Thermal Systems. Center for Scientific Publishing King Abdulaziz University, Jeddah, 808.
  • Reid, R. C., Prausnitz, J. M., & Poling, B. E. (1987). The Properties of Gases and Liquids, McGraw-Hill. New York, 136.
  • Ajib, S., & Karno, A. (2008). Thermo physical properties of acetone–zinc bromide for using in a low temperature driven absorption refrigeration machine. Heat and mass transfer, 45(1): 61-70.
  • Al-Masri R. et al. (2008). Reference in the principles of solar thermal applications. Al - Baath University.
  • Ebade S. T. et al. (1998). Fundamentals of Finance and Financial Management. Ain Shams Library, Cairo.
  • Singh, K. P., & Singh, O. (2019). Thermodynamic Investigation of Solar Energy-Driven Diffusion Absorption Refrigeration Cycle. In Advances in Fluid and Thermal Engineering (pp. 459-478). Springer, Singapore.
  • J. Li, X. Kong. (2018). Thermally Activated Refrigeration Technologies. Handbook of Energy Systems in Green Buildings, 655-712, Springer-Verlag GmbH Germany, part of Springer Nature 2018.
  • Dincer, I., & Ratlamwala, T. A. H. (2016). Developments in Absorption Refrigeration Systems. In Integrated Absorption Refrigeration Systems (pp. 241-257). Springer, Cham.