High Voltage Gain Multi-port Bidirectional DC-DC Converter with an Effective Multi-loop Control Strategy for PV/Battery Integrated Systems

This study proposes a novel isolated bidirectional multiport converter (MPC) based on a switched-capacitor converter and a half-bridge converter with an effective control scheme for photovoltaic (PV) powered and battery buffered systems. The proposed power electronics converter interface integrates the converters to which the ports are connected with a battery coupled common dc busbar and high frequency transformer (HFT). Thus, the three-port converter is formed without any need for an additional converter to regulate battery power flow. In addition, to transfer power from a low voltage PV energy unit to the battery and load, a single switch DC-DC converter with high voltage gain is proposed. The power flow between the ports is controlled by an effective multi-loop control scheme that is able to perform a smooth transition between the loops. In order to validate the viability and effectiveness of the proposed MPC, a 3 kW proof-of-concept model has been developed with a 3 kW PV and 220 V 12 Ah battery. The performance of the proposed converter has been analyzed for different case studies, including dynamic operating and loading conditions.

___

  • Das, M., Agarwal, V. (2016). Design and Analysis of a High-Efficiency DC–DC Converter With Soft Switching Capability for Renewable Energy Applications Requiring High Voltage Gain. IEEE Transactions on Industrial Electronics, 63: 2936-2944. doi:10.1109/TIE.2016.2515565.
  • Shen, D., Lim, C.-C., Shi, P. (2020). Robust fuzzy model predictive control for energy management systems in fuel cell vehicles. Control Engineering Practice, 98: 1-12. doi: 10.1016/j.conengprac.2020.104364.
  • Naidu, B. R., Panda, G., Siano, P., (2018). A Self-Reliant DC Microgrid: Sizing, Control, Adaptive Dynamic Power Management, and Experimental Analysis. IEEE Transactions on Industrial Informatics, 14: 3300-3313. doi: 10.1109/TII.2017.2780193.
  • Gangatharan, S., Rengasamy, M., Elavarasan, R. M., Das, N., Hossain, E., Sundaram, V. M. (2020). A Novel Battery Supported Energy Management System for the Effective Handling of Feeble Power in Hybrid Microgrid Environment. IEEE Access, 8: 217391-217415. doi: 10.1109/ACCESS.2020.3039403.
  • Prabhakaran P., Agarwal, V. (2020). Novel Four-Port DC–DC Converter for Interfacing Solar PV–Fuel Cell Hybrid Sources With Low-Voltage Bipolar DC Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8: 1330-1340. doi: 10.1109/JESTPE.2018.2885613.
  • Jiang, J., Gao, L., Jin, J., Luan, T. H., Yu, S., Xiang, Y. (2019). Sustainability Analysis for Fog Nodes With Renewable Energy Supplies. IEEE Internet of Things Journal, 6: 6725-6735. doi: 10.1109/JIOT.2019.2910875.
  • Savrun M. M., Atay, A. (2020). Multiport bidirectional DC–DC converter for PV powered electric vehicle equipped with battery and supercapacitor. IET Power Electronics, 13:3931-3939. doi: 10.1049/iet-pel.2020.0759.
  • Savrun M. M., İnci, M. (2021). Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications. Journal of Cleaner Production, 299:1-11. doi: 10.1016/j.jclepro.2021.126944.
  • Sefa, I., Altin, N., Ozdemir, S., Kaplan, O. (2015). Fuzzy PI controlled inverter for grid interactive renewable energy systems. IET Renewable Power Generation, 9: 729-738. doi: 10.1049/iet-rpg.2014.0404.
  • Vettuparambil, A., Chatterjee, K., Fernandes, B. G. (2021). A Multiport Converter Interfacing Solar Photovoltaic Modules and Energy Storage With DC Microgrid. IEEE Transactions on Industrial Electronics, 68: 3113-3123. doi: 10.1109/TIE.2020.2978709.
  • Zhang, N., Sutanto, D., Muttaqi, K. M. (2016). A review of topologies of three-port DC–DC converters for the integration of renewable energy and energy storage system. Renewable and Sustainable Energy Reviews, 56: 388-401. doi: 10.1016/j.rser.2015.11.079.
  • Bhattacharjee, A. K., Kutkut, N., Batarseh, I. (2019). Review of Multiport Converters for Solar and Energy Storage Integration. IEEE Transactions on Power Electronics, 34: 1431-1445. doi: 10.1109/TPEL.2018.2830788.
  • Khosrogorji, S., Ahmadian, M., Torkaman, H., Soori, S. (2016). Multi-input DC/DC converters in connection with distributed generation units – A review. Renewable and Sustainable Energy Reviews, 66: 360-379. doi: 10.1016/j.rser.2016.07.023.
  • Chaudhury T., Kastha, D. (2020). A High Gain Multiport DC–DC Converter for Integrating Energy Storage Devices to DC Microgrid. IEEE Transactions on Power Electronics, 35:10501-10514. doi: 10.1109/TPEL.2020.2977909.
  • Savrun, M. M., Köroğlu, T., Tan, A., Cuma, M. U., Bayindir, K. Ç., Tümay, M. (2020). Isolated H-bridge DC–DC converter integrated transformerless DVR for power quality improvement. IET Power Electronics, 13: 920-926. doi: 10.1049/iet-pel.2019.0687
  • Chakraborty S., Chattopadhyay, S. (2017). Minimum-RMS-Current Operation of Asymmetric Dual Active Half-Bridge Converters With and Without ZVS. IEEE Transactions on Power Electronics, 32: 5132-5145. doi: 10.1109/TPEL.2016.2613874.
  • Forouzesh, M., Siwakoti, Y. P., Gorji, S. A., Blaabjerg, F., Lehman, B. (2017). Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics, 32: 9143-9178. doi: 10.1109/TPEL.2017.2652318.
  • Wu, H., Zhang, J., Qin, X., Mu, T., Xing, Y. (2016). Secondary-Side-Regulated Soft-Switching Full-Bridge Three-Port Converter Based on Bridgeless Boost Rectifier and Bidirectional Converter for Multiple Energy Interface. IEEE Transactions on Power Electronics, 31: 4847-4860. doi: 10.1109/TPEL.2015.2473002.
  • Saadi, R., Hammoudi, M. Y., Kraa, O., Ayad, M. Y., Bahri, M. (2020). A robust control of a 4-leg floating interleaved boost converter for fuel cell electric vehicle application. Mathematics and Computers in Simulation, 167: 32-47. doi: 10.1016/j.matcom.2019.09.014.
  • Thounthong P., Davat, B. (2010). Study of a multiphase interleaved step-up converter for fuel cell high power applications. Energy Conversion and Management, 51: 826-832. doi: 10.1016/j.enconman.2009.11.018.
  • Bi, H., Wang, P., Che, Y. (2019). A Capacitor Clamped H-Type Boost DC-DC Converter With Wide Voltage-Gain Range for Fuel Cell Vehicles. IEEE Transactions on Vehicular Technology, 68: 276-290. doi: 10.1109/TVT.2018.2884890.
  • Kapat, S., Patra, A., Banerjee, S. (2009). A Current-Controlled Tristate Boost Converter With Improved Performance Through RHP Zero Elimination. IEEE Transactions on Power Electronics, 24: 776-786. doi: 10.1109/TPEL.2008.2008994.
  • Tang, Y., Fu, D., Wang, T., Xu, Z. (2015). Hybrid Switched-Inductor Converters for High Step-Up Conversion. IEEE Transactions on Industrial Electronics, 62: 1480-1490. doi: 10.1109/TIE.2014.2364797.
  • Ismail, E. H., Al-Saffar, M. A., Sabzali, A. J. (2008). High Conversion Ratio DC–DC Converters With Reduced Switch Stress. IEEE Transactions on Circuits and Systems I: Regular Papers, 55: 2139-2151. doi: 10.1109/TCSI.2008.918195.
  • İnci, M., Büyük, M., Savrun, M. M., Demir, M. H. (2021). Design and analysis of fuel cell vehicle-to-grid (FCV2G) system with high voltage conversion interface for sustainable energy production. Sustainable Cities and Society, 67: 1-12. doi: 10.1016/j.scs.2021.102753.