Nonlineer Sürüklenmeli Memristör Modelleri Kullanılarak Memristör Tabanlı Testere Dişi Sinyal Kaynağının Modellenmesi ve Simülasyonu

Yeni devre elemanı memristörün yeni tip analog devre uygulamaları inceleme altındadır. Memristörler şu ana kadar zaten bazı osilatör devrelerinde kullanılmıştır. Yakın zamanda, HP memristör modeli ve onun emülatörü kullanılarak bir testeredişi dalga sinyal jeneratörünün yapılabileceği gösterilmiştir.  HP memristör model artık geçersiz olmuştur. Literatürde, pencere fonksiyonu kullanan iyonik memristör modelelri bulunmaktadır. Bu makalede, bir kaç iyi bilinen Nonlineer Sürüklenme hızlı memristör modelinin bir testeredişi dalga jeneratörünün benzetiminde kullanılabilirliği analiz edilmiştir. Beş farklı model kullanılarak testeredişi dalga jeneratörünün analizi yapılmıştır. Devre denklemleri çzöülerek bazı modellerin kapalı fonksiyon şeklinde çzöümü olduğu ve bazı çözümlerin memristör sınırlarında (memristör durum değişkeni sıfıra ya da bire eşit olduğunda) çalışmadığı gösterilmiştir. Biolek’in pencere fonksiyonu ve bir değiştirilmiş Biolek pencere fonsiyonu olan Zha’nın pencere fonksiyonu MATLAB programıyla yapılan benzetimler kullanılarak, tüm çalışma bölgesi için en kullanışlı pencere fonksiyonları olarak bulunmuştur. Sinyal jeneratörünün alçak ve yüksek frakans davranışıda gösterilmiştir. 

Modeling and Simulation of a Memristor-Based Sawtooth Signal Generator Using Nonlinear Dopant Drift Memristor Models

The new circuit element memristor is under inspection for new type of analogue applications. Memristors are already used in some oscillator circuits. Recently, it has been shown that a sawtooth signal generator with a memristor can be made using HP model of Ti02 memristor and its emulator. HP memristor model is obsolete now. In literature, there are ionic memristor models which uses window functions. In this paper, several well-known nonlinear drift memristor model’s usability to simulate such a sawtooth signal generator is examined. Analysis of the sawtooth signal generator is done using five different models. It has been shown solving circuit equations that some of the models have closed form solutions and some of the solutions are invalid at the memristor boundaries (when the state variable is equal to zero or one). Biolek’s window function and a modified Biolek’s window function, Zha’s window function are found to be the most useful ones to model the memristor throughout its whole operation using simulations made in Matlab. Low and high frequency behavior of the signal generator is also shown.  

___

  • [1] L. O. Chua, "Memristor - The Missing Circuit Element," IEEE Trans. Circuit Theory, pp. vol. 18, pp. 507-519, 1971.
  • [2] L. O. Chua ve S. M. Kang, «Memrisive devices and systems,» Proc.IEEE, pp. vol. 64, pp. 209-223, 1976.
  • [3] S. Williams, D. B. Strukov, G. S. Snider ve D. R. Stewart, «The missing memristor found,» Nature (London), pp. vol. 453, pp. 80-83, 2008.
  • [4] S. Williams, «How we found the missing memristor,» IEEE Spectrum, pp. 45(12), 28–35, 2008.
  • [5] O. Kavehei, A. Iqbal, Y.S. Kim, K. Eshraghian, S.F. Al-Sarawi and D. Abbott, “The Fourth Element: Characteristics, Modelling, and Electromagnetic Theory of the Memristor,” Proceedings of Royal Society A, 2010.
  • [6] Mazumder, P., Kang, S. M., & Waser, R. (2012). Memristors: devices, models, and applications. Proceedings of the IEEE, 100(6), 1911-1919.
  • [7] Kavehei, O., Kim, Y. S., Iqbal, A., Eshraghian, K., Al-Sarawi, S. F., & Abbott, D. (2009, July). The fourth element: Insights into the memristor. In Communications, Circuits and Systems, 2009. ICCCAS 2009. International Conference on (pp. 921-927). IEEE.
  • [8] Hu, S. G., Wu, S. Y., Jia, W. W., Yu, Q., Deng, L. J., Fu, Y. Q., ... & Chen, T. P. (2014). Review of nanostructured resistive switching memristor and its applications. Nanoscience and Nanotechnology Letters, 6(9), 729-757.
  • [9] PERSHIN, Yu V.; MARTINEZ-RINCON, J.; DI VENTRA, M. Memory circuit elements: from systems to applications. Journal of Computational and Theoretical Nanoscience, 2011, 8.3: 441-448.
  • [10] Prodromakis, T. (2013). Two centuries of memristors. In Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua With DVD-ROM, composed by Eleonora Bilotta (pp. 508-517).
  • [11] Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A., Stewart, D. R., & Williams, R. S. (2008). Memristive switching mechanism for metal/oxide/metal nanodevices. Nature nanotechnology, 3(7), 429.
  • [12] Joglekar, Yogesh N., and Stephen J. Wolf. "The elusive memristor: properties of basic electrical circuits." European Journal of Physics 30.4 (2009): 661.
  • [13] Biolek, Z., Biolek, D., & Biolkova, V. (2009). SPICE model of memristor with nonlinear dopant drift. Radioengineering, 18(2), 210–214.
  • [14] PRODROMAKIS, Themistoklis, et al. A versatile memristor model with nonlinear dopant kinetics. IEEE transactions on electron devices, 2011, 58.9: 3099-3105.
  • [15] Zha, J., Huang, H., & Liu, Y. (2016). A novel window function for memristor model with application in programming analog circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(5), 423-427.
  • [16] Y. V. Pershin &M. Di Ventra, “Practical approach to programmable analog circuits with memristors,” IEEE Transactions Circuits and Systems I: Regular Papers, pp. 57(8), 1857–1864, 2010.
  • [17] T. Prodromakis, C. Toumazou “A Review on Memristive Devices and Applications “Electronics, Circuits, and Systems (ICECS), 17th IEEE International Conference on, pp. 934 – 937, 2010.
  • [18] S. Shin, K. Kim, S.M. Kang, “Memristor-based fine resolution programmable resistance and its applications”, in ICCCAS 2009 International Conference on Communications, Circuits and Systems, pp. 948–951, 2009.
  • [19] S. Shin, K. Kim, S.M. Kang, “Memristor applications for programmable analog ICs,” IEEE Transactions on Nanotechnology, Vol. 10, pp. 266–274, 2011.
  • [20] Yi, W., Perner, F., Qureshi, M. S., Abdalla, H., Pickett, M. D., Yang, J. J., ... & Williams, R. S. (2011). Feedback write scheme for memristive switching devices. Applied Physics A, 102(4), 973-982.
  • [21] T.A. Wey, W.D. Jemison, “Variable gain amplifier circuit using titanium dioxide memristors”, IET Circuits, Devices & Systems, Vol. 5, pp. 59–65, 2011.
  • [22] Berdan, R., T. Prodromakis, and C. Toumazou. "High precision analogue memristor state tuning." Electronics letters 48.18 (2012): 1105-1107.
  • [23] D. Yu, H. H. C. Lu, L. A. Fitch & Y. Liang, “A floating memristor emulator based relaxation oscillator,” IEEE Transactions on Circuits and Systems – I: Regular Papers, pp. 61(10), 2888–2896, 2014.
  • [24] A. Ascoli, R. Tetzlaff, F. Corinto, M. Mirchev & M. Gilli, “Memristor-based filtering applications,” 14th Latin American Test Workshop (LATW) , 2013.
  • [25] YENER Ş., MUTLU R., KUNTMAN H. H., Performance Analysis of a Memristor - Based Biquad Filter Using a Dynamic Model, Journal of Microelectronics,Electronic Components and Materials, vol. 44, pp. 109-118, 2014.
  • [26] YENER Ş. Ç., MUTLU R., KUNTMAN H. H., Small signal analysis of memristor-based low-pass and high-pass filters using the perturbation theory, OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, vol. 12, pp. 55-62, 2018.
  • [27] YENER Ş., MUTLU R., KUNTMAN H. H., A New Memristor-based High-pass Filter/Amplifier: Its Analytical and Dynamical Models, RADIOELEKTRONIKA 2014 (15.04.2015-16.04.2015).
  • [28] MUTLU, R. (2015). Solution of TiO2 memristor-capacitor series circuit excited by a constant voltage source and its application to calculate operation frequency of a programmable TiO2 memristor-capacitor relaxation oscillator. Turkish Journal of Electrical Engineering & Computer Sciences, 23(5), 1219-1229.
  • [29] Talukdar A, Radwan AG, Salama KN. Generalized model for memristor-based Wien-family oscillators, Journal of Microelectronics 2011; 42; pp. 1032–1038.
  • [30] Makoto Itoh and L. O. Chua, ”Memristor Oscillators”, International Journal of Bifurcation and Chaos, Vol. 18, pp. 3183-3206, 2008.
  • [31] B. Muthuswamy, “Implementing Memristor Based Chaotic Circuits”, International Journal of Bifurcation and Chaos, Vol. 20, p.p. 1335–1350, 2010.
  • [32] Mosad, A. G., Fouda, M. E., Khatib, M. A., Salama, K. N., & Radwan, A. G. (2013). Improved memristor-based relaxation oscillator. Microelectronics Journal, 44(9), 814-820.
  • [33] FOUDA, Mohammed E.; RADWAN, Ahmed G. Power dissipation of memristor-based relaxation oscillators. Radioengineering, 2015, 24.4: 968-973.
  • [34] T.A. Wey, S. Benderli, “Amplitude modulator circuit featuring TiO2 memristor with linear dopant drift”, Electronics Letters, Vol 45, 2009, p.p. 1103 – 1104, 2009.
  • [35] Özgüvenç A., MUTLU R., KARAKULAK E., Sawtooth signal generator with a memristor, 1st International Conference on Engineering Technology and Applied Sciences (21.04.2016-22.04.2016).
  • [36] https://www.wolframalpha.com/calculators/integral-calculator/