Aljinat Boncukları ile Trametes versicolor Lakkazının Optimum İmmobilizasyon Koşullarının Belirlenmesi

Lakkaz (EC 1.10.3.2), fenolik bileşikler gibi çeşitli çevresel kirleticilerin oksidasyonunu katalizleyen çoklu bakır enzimidir. Çevresel ve endüstriyel uygulamalar için bir taşıyıcı üzerinde enzimin immobilize edilmesiyle etkinliği arttırılabilir. Bu çalışmada, Trametes versicolor’dan elde edilen lakkaz sodium aljinat ve kappa-karagen üzerinde immobilize edilmiş, temas süresi, pH, sıcaklık, taşıyıcı miktarı, enzim konsantrasyonun etkisi değerlendirilmiştir. Sodyum aljinat ve kappa-karragenanın immobilizasyon etkinliği araştırılmıştır. Sonuç olarak, sodyum aljinat boncukları yüksek immobilizasyon veriminden dolayı en iyi taşıyıcı olarak seçilmiştir. Maksimum lakkaz immobilizasyonu, 30 dakika temas süresi, pH 4.5, 30 °C, 200 mg sodyum aljinat koşullarında elde edilmiştir.

Determination of Optimum Immobilization Conditions of Trametes versicolor Laccase with Sodium Alginate Beads

 Laccase (EC 1.10.3.2) is a multi copper enzyme that catalyzes the oxidation of various environmentalpollutants such as phenolic compounds. The efficiency of the enzyme for environmental and industrialapplications can be increased by immobilizing the enzyme on a carrier. In the present study, laccaseobtained from Trametes versicolor (fungi) was immobilized on sodium alginate beads and kappacarrageenanand the effect of contact time, pH, temperature, the amount of carrier and enzymeconcentration were investigated to determine optimum conditions of laccase immobilization. Sodiumalginate beads were chosen as the most efficient carrier due to their high immobilization yield. Maximumlaccase immobilization was determined as 30 min of contact time, pH 4.5, 30 °C of temperature, 200mg of sodium alginate amount. 

___

  • Aktaş N. (1999) 1-Naftol’un Enzimatik Polim- erizasynunun ve Reaksiyon Kinetiğinin İncelenmesi, Bilim Uzmanlığı Tezi, Hacet- tepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Arcand R.L., and Archibald F.S. (1991) Direct dechlorination of chlorophenolic compounds by laccases from Trametes (Coriolus) versicolor. Enzyme&Microbial Technology, 13:194-203.
  • Brandi P., D’Annibale A., Gali C., Gentili P., Nunes Pontes A.S. (2006) In search for prac- tical advantages from the immobilisation of an enzyme: the case of laccase. J. Mol.Catal. B: Enzymatic, 41(1–2, 3):61-69.
  • Bourbonnais ,R., Paice, M., Reid,I., Lanthier P and Yaguchi, M. (1995). Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonate) i n kraft lignin depolymerization. Applied and Environmental Microbiology, 61,1876-1880.
  • Cho N.S., Cho H.Y., Shın S.J., Cho Y.J., Leonowıcz A. and Ohga S. (2008) Production of Fungal Laccase and Its Immobilization and Stability. Journal of The Faculty of Agriculture Kyushu University, 53(1):13–18.
  • Couto SR, Toca-Herrera JL.(2007). Laccase production at reactor scale by filamentous fungi Biotechnol Adv.,25:558-569
  • D’Annibale A., Stazi S.R., Vinciguerra V., Giovannozzi Sermanni G. (2000) Oxirane-immobilized Lentinula edodes laccase: stability and phenolics removal efficiency in olive mill wastewater. Journal of biotechnology, 77:265–273.
  • Dong JL, Zhang YW, Zhang RH, Huang WZ, Zhang YZ(2005). Influence of culture con- ditions on laccase production and isozyme patterns in the white-rot fungus Trametes gallica. Journal of Basic Microbiology, 45(3):190-198
  • Duran N., and Esposito E. (2000) Potantial Applications of Oxidative Enzymes and Phenoloxidase-like Compounds in Wastewater and Soil Treatment. Review. App.Catal. Environ., 28: 83-99.
  • Duran N., Rosa M.A., D’Annibale A., Gianfreda L. (2012) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme&Microbial Technology, 31:907–931.
  • Eikmeier H., Westmeier F. and Rehm H.J. (1984)
  • Morphological development of Aspergillus niger immobilized in Ca-aljinate and K-carrageenan. Applied Microbiology and Biotechnology,19:53-57. Forney J.J. and Reddy C.A. (1979) Bacterial degradation of kraft lignin. Develop. Industrial Microbiology, 20:163-175.
  • Gianfreda L. and Rao M. A. (2004) Potentia1 of extracellular enzymes in remediation of polluted soils. A review. Enzyme Microb. Technol., 35:339-354.
  • Jia Li, D. and Yi Zheng Z. (2004) Purification and Characterization of Two Laccase Iso- enzymes from a Ligninolytic Fungus Trametes gallica. Prep. Biochem & Biotechnol, 34(2):179-194.
  • Kiiskinen, L.L., Palonen, H., Linder, M., Viikari, L. and Kruus, K. (2004) Laccase from
  • Melanocarpus albomyces binds effectively to cellulose. FEBS Letters 576, 251-255. Kirkpatrick N., Reid I.D., Ziomek E. and Paice M.G.(1990) Biological bleaching of hardwood kraft pulp using Trametes (Coriolus) versicolor, immobilized in poliurethane foam. Applied Microbiology and Biotechnology, 33:105- 108.
  • Leonowicz A., Sarkar J.M. and Bollag J.M., 1988, Improvement in stability of an immo- bilized fungal laccase, Applied Microbiology and Biotechnology, 29: 129-135.
  • Leontievsky,A., Myasoedova,N., Pozdnyakova,N and Golovleva,L. (1997) ‘Yellow’ laccase of Panus tigrinus oxidizes non-phenolic substrates without electron-transfer mediators. FEBS Letters 413, 446-448
  • Limura Y., Hartikainen P. and Tatsumi K., (1996) Dechlorination of tetrachloroguai- acol by laccase of white rot basidomycete Coriolus versicolor. Applied Microbiology and Biotechnology, 45:434-439.
  • Mansour S.J., Herbrick J.A., Scherer S.W. and Melancon P. (1998) Human GBF1 is a ubiquitously expressed gene of the sec7 domain family mapping to 10q24. Genomics, 54:323-327.
  • Novotny C., Svobodova K., Erbanova P., Cajthamla T., Kasinatha A., Lang E., , Sasek V., (2004) Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil biology&Biochemistry, 36:1545–1551.
  • Orth A.B., Tien M. (1995) Biotechnology of lignin biodegradation. In: Kuck (Ed). The mycota II. Genetics and biotechnology. Springer Verlag Berlin Heidelberg CO. pp. 289-302.
  • Paice M.G., Jurasek L., Ho, C., Bourbonnais R. and Archibald F. (1989) Direct biological bleaching of hardwood kraft pulp with the fungus Coriolus versicolor. Tappi journal., 75:217-221.
  • Palmieri G., Giardina P., Desiderio B., Marzullo L., Giamberini M., Sannia G. (1994) A new enzyme immobilization procedure using copper alginate gel: application to a fungal phenoloxidase. Enzyme&Microbial Technology, 16:151–158.
  • Rozie H., Somers W., Bonte A., Visser J., Van’t Riet K. and Rombouts F.M. (1988) Adsorption Characteristics of Endo-polygalacturonase on Aljinate Beads. Biotechnology and Applied Bochemistry, 10:346-358.
  • Sun W.Q. and Payne G.F.(1996) Tyrosinase-containing chitosan gels: A combined catalyst and sorbent for selective phenol removal. Biotechnology&Bioengineering, 51:79-86.
  • Taşpınar A.,and Kolankaya N. (1998) Optimization of enzymatic chlorine removal from Kraft pulp. Bulletin of Environmental Contamination and Toxicology, 61:15-21.
  • Thurston C. F. (1994) The structure and function of fungal laccases. Microbiology, 140 (1):19–26.
  • Ünal A., Çabuk A., Kolankaya N. (2011) Dechlorınatıon of 2,4,6-Trıchlorophenol by Free and immobılızed laccase from Trametes versıcolor in a lab scale bıoreactor, Anadolu University Journal of Science & Technology-C: Life Sciences & Biotechnology, 1(2): 113-124.
  • Wada S., Ichikawa H. and Tatsumi K. (1992) Removal of phenols from tyrosinase immobilized on magnetite. Water Science and Technology, 26:2057-2059.
  • Wada, S., Ichikawa H. and Tatsumi K. (1993) Removal of phenols from wastewater by soluble and immobilized tyrosinase. Biotechnology&Bioengineering, 42:854-858