Dental implantların biyomekaniği ve sonlu elemanlar stres analiz yöntemi uygulamaları

ømplantÕn çi÷neme kuvetlerine karúÕ koymasÕ ve bu kuvvetleri protez-implant ve kemik sisteminde mekanik dengeyi sa÷layacak úekilde iletmesi implantÕn uzun dönem baúarÕsÕnda önemli rol oynar. ømplantlara etki eden kuvvetler çi÷neme sisteminin ve protetik materyallerin biyomekanik özelliklerinden etkilenir. Çi÷neme kaslarÕnÕn uyguladÕ÷Õ çi÷neme kuvvetleri çene kemiklerine iletilirken canlÕ dokularÕn fizyolojik limitler içinde etkilenmesi ve aúÕrÕ streslerin oluúmamasÕ için iletim yolarÕnda diúler, kökleri ve periodonsiyumlarÕ, protez materyalleri, implant ortaya çÕkacak stresin belirlenmesi gerekir. Kemik, diú gibi biyolojik malzemelerde stres analizini gerçekleútirmek güç oldu÷undan modelinin hazÕrlanarak analiz edilmesi gerekir. Sonlu elemanlar stres analiz yöntemi, implantlardaki streslerin de÷erlendirilmesinde kullanÕlan teorik yöntemlerden biridir. ømplantlarda uygulanan stres analiz çalÕúmalarÕ, klinsyenin tedavi seçenekleri açÕsÕndan yönlendirici olacak ve uzun dönem baúarÕ oranÕnÕ arÕracaktÕr.

DENTAL İMPLANTLARIN BİYOMEKANİöİ VE SONLU ELEMANLAR STRES ANALİZ YÖNTEMİ UYGULAMALARI

The resistance of the implant aganist the masticatory forces and transferring these forces through prosthetic-implant-bone system so as to provide mechanical balance plays an important role in the long-term success of the implant. The forces that affect implants are effected by the biomechanical properties of the masticatory system and prosthetic materials. The stress which will occur on the transmission pathways teeth, roots and periodontium, prosthetic materials, implant should be determined, so that excess stresses do not form and vital tissues are effected minimally when the masticatory forces of the masticatory muscles are transferred to the jaw bones. Since it is difficult to perform stress analyses of biological materials, such as bone, teeth, the models of these materials should be formed. Finite element stress analysis method is one of the theoretical methods used for evaluating the stresses in the implants. Stress analysis studies of implants will be a guide for the treatment options of the clinician and will increase the rate of the success.

___

  • Caputo, AA, Wylie, RS. Role of bio- mechanics in periodontal therapy. Eri- şim:[http://www.dentalsupplyhouse.com/visito rs/biomechanics/].Erişim tarihi: 07.12.1998.
  • Uysal, H. Kemiğin mekanik özellikleri ve kuvvet altında geliştirdiği mekanik ve biyo- lojik davranışlar. Oral İmplantoloji Dergisi 1997; 4: 36-43.
  • Brunski, JB, Puelo, DA, Nanci, A. Bi- omaterials and biomechanics of oral and maxillofacial implants: Current status and futu- re developments. Int J Oral Maxillofac Imp- lants 2000;15 (1): 15-47.
  • Bidez, MW, Misch, CE. Force transfer in implant dentistry: Basic concepts and prin- cipals. J Oral Implantol 1992; 18 (3): 264-274.
  • Akın-Nergiz, N, Nergüz, İ, Schultz, A, Arpak, N, Niedermeier, W. Reactions of peri- implant tissues to continious loading of osseo- integrated implants. Am J Orthodontics Dento- facial Orthop 1998; 114: 292-298.
  • Duyck, J, Rİnold, HJ, Oosterwyck, HV, Naert, I, Sloten, JV., Ellingsen, JE. The influ- ence of static and dynamic loading on marginal bone reactions around osseointegrated imp- lants: an experimental animal study. Clin Oral Implants Res 2001; 12: 207-218.
  • Chao, YL, Meijer, HJA., Oort, RPV., Versteegh, PAM. The incomprehensible suc- cess of the implant stabilised overdenture in the edentulous mandible: A literature review on Transfer of Chewing forces to bone surron- ding implants. Eur J Prosthodont Restor Dent 1995; 3(6): 255-261.
  • De Tolla, DH, Andreana, S, Patra, A, Buhite, R, Comelle, B. The role of the finite element model in dental implants. J Oral Imp- lantol 2000; 26(2): 77-81.
  • Tonetti, MS, Schmid, J. Pathogenesis of implant failures. Periodontol 2000 1994; 4: 127-138.
  • Spiekermann, H, Donath, T, Jovano- vic, S, Richter, J. Color Atlas of Medicine. Implantology. Thieme Medical Publishers, Inc., New York 1995; 317-329.
  • Glantz, POJ., Nilner, K. Biomechani- cal aspects of prosthetic implant borne recont- ructions. Periodontol 2000 1998; 17: 119-124.
  • Lundgren, D, Laurell, L. Biomechani- cal aspects of fixed bridgework supported by naturel teeth and endoosseos implants. Perio- dontol 2000 1994; 4: 23-41.
  • Bassit, R, LindstrĘm, H, Rangert, B. In vivo registration of force development with ce- ramic and acrylic resin occlusal materials on implant-supported prostheses. Int J Oral Maxil- lofac Implants 2002; 17: 17-23.
  • Baran, İ. İki Tip Silindirik Endosteal İmplant Alt Yapı Üzerine Hazırlanmış Üç De- ğişik Tüberkül Eğimli Kron Tasarımlarına Uy- gulanan Vertikal Kuvvetlerin Oluşturduğu Ge- rilimlerin “Finite Element Stress Analysis” Yöntemi ile İncelenmesi. Tez, Ankara, 1995; 4-11.
  • Aydınlık, E, ùahin, E. Diş hekimliğin- de stres analizleri. Hacettepe Diş Hekimliği Fakültesi Dergisi 1977; 1(1): 78-85.
  • Baran, NM. Finite Element Analysis on Microcomputers. McGraw Hill, Inc., 1998; 27-60.
  • Martin, HC, Carey, GF. Introduction to Finite Element Analysis. McGraw-Hill, Inc., 1973; 1-11.
  • Rockey, KC, Evans, HR, Griffiths, DW, Nethercot, DA. The finite element met- hod. A basic introduction for engineers. Gra- nada Publishing Limited,1983; 1-6.
  • Ledley, RS, Huang, HK. Linear model of tooth displacement by applied forces. J Dent Res 1968; 47: 427-432.
  • Vaillancourt H, Pilliar RM, McCam- mond D. Factors affecting crestal bone loss with dental implants partially covered with a porous coating: a finite element analysis. Int J Oral Maxillofac Implants. 1996 May- Jun;11(3):351-9.
  • Savadi RC, Agarwal J, Agarwal RS, Rangarajan V. Influence of Implant Surface Topography and Loading Condition on Stress Distribution in Bone Around Implants: A Comparative 3D FEA. J Indian Prosthodont Soc. 2011 Dec;11(4):221-31.
  • Cheng HY, Chu KT, Shen FC, Pan YN, Chou HH, Ou KL. Stress effect on bone remodeling and osseointegration on dental implant with novel nano/microporous surface functionalization. J Biomed Mater Res A. 2013 Apr;101(4):1158-64.
  • Matsushita, Y, Kitoh, M, Mizuta, K, Ikeda, H, Suetsugu, T. Two dimensional FEM analysis of hydroxyapatite implants: Diameter effects on stress distribution. J Oral Implantol 1990;16(1): 6-11.
  • Pellizzer EP, Verri FR, de Moraes SL, Falcón-Antenucci RM, de Carvalho PS, Nori- tomi PY. Influence of the implant diameter with different sizes of hexagon. Analysis by FEM-3D. J Oral Implantol. 2011 Apr 4.
  • Demenko V, Linetskiy I, Nesvit K, Hubalkova H, Nesvit V, Shevchenko A. Im- portance of diameter-to-length ratio in selec- ting dental implants: a methodological finite element study. Comput Methods Biomech Bi- omed Engin. 2012 May 22.
  • Mohammed Ibrahim M, Thulasingam C, Nasser KS, Balaji V, Rajakumar M, Rup- kumar P. Evaluation of design parameters of dental implant shape, diameter and length on stress distribution: a finite element analysis. J Indian Prosthodont Soc. 2011 Sep;11(3):165- 71.
  • Bourauel C, Aitlahrach M, Heinemann F, Hasan I. Biomechanical finite element analysis of small diameter and short dental implants: extensive study of commercial imp- lants. Biomed Tech (Berl). 2012 Jan 26;57(1):21-32.
  • Toniollo MB, Macedo AP, Rodrigues RC, Ribeiro RF, de Mattos Mda G. Three- dimensional finite element analysis of stress distribution on different bony ridges with diffe- rent lengths of morse taper implants and prost- hesis dimensions. J Craniofac Surg. 2012 Nov;23(6):1888-92.
  • Lee JS, Lim YJ. Three-dimensional numerical simulation of stress induced by dif- ferent lengths of osseointegrated implants in the anterior maxilla. Comput Methods Bio- mech Biomed Engin. 2012 Mar 8.
  • Rieger, MR, Adams, WK, Kinzel, GL. A finite element survey of eleven endosseos implants. J Prosthet Dent 1990; 63: 457-465.
  • Fazi G, Tellini S, Vangi D, Branchi R. Three-dimensional finite element analysis of different implant configurations for a mandibu- lar fixed prosthesis. Int J Oral Maxillofac Imp- lants. 2011 Jul-Aug;26(4):752-9.
  • Papavasiliou, G, Kamposiora, P, Bay- ne, SC, Felton, DA. Three dimensional finite element analysis of stress distribution around single tooth implants as a function of bony support, prosthesis type and loading during function. J Prosthet Dent 1996; 76: 633-640.
  • Papavasiliou, G, Kamposiora, P, Bay- ne, SC, Felton, DA. 3D FEA of osseointegra- tion percentages and patterns on implant bone interfacial stresses. J Dent 1997; 25: 485-491.
  • Holmes, DC, Loftus, JT. Influence of bone quality on stress distribution for endoos- seos implants. J Oral Implantol 1997; 3: 104- 111.
  • Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlu- sal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study. J Prosthet Dent. 2004 Feb;91(2):144-50.
  • Yilmazi B, Karaagaclioglu L, Belli S, Eskitascioglu G. Evaluation of functional stress in different occlusion types of dentures supported by osseointegrated implants for edentulous patients by FEM. Journal of dental research; 2002 March, 81, special issue p:393.
  • Chou IC, Lee SY, Wu MC, Sun CW, Jiang CP. Finite element modelling of implant designs and cortical bone thickness on stress distribution in maxillary type IV bone. Comput Methods Biomech Biomed Engin. 2012 Jun 29.
  • Chang SH, Lin CL, Hsue SS, Lin YS, Huang SR. Biomechanical analysis of the ef- fects of implant diameter and bone quality in short implants placed in the atrophic posterior maxilla. Med Eng Phys. 2012 Mar;34(2):153- 60.
  • Yoon KH, Kim SG, Lee JH, Suh SW. 3D finite element analysis of changes in stress levels and distributions for an osseointegrated implant after vertical bone loss. Implant Dent. 2011 Oct;20(5):354-9.
  • Koca OL, Eskitascioglu G, Usumez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent. 2005 Jan;93(1):38-44.
  • Akca K, Cehreli MC. Biomechanical consequences of progressive marginal bone loss around oral implants: a finite element stress analysis. Med Biol Eng Comput. 2006 Jul;44(7):527-35.
  • Van Oosterwyck, H, Duyck, J, Sloten, JV, Van der Perre, G, Naert, I. Periimplant bo- ne tissue strains in cases of dehissence: a finite element study. Clin Oral Impl Res; 13:327- 333.
  • Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of margi- nal bone resorption around osseointegrated implants: considerations based on a three- dimensional finite element analysis. Clin Oral Implants Res. 2004 Aug;15(4):401-12.
  • Esposito M, Thomsen P, Ericson LE, Lekholm U. Histopathologic observations on early oral implant failures. Int J Oral Maxillo- fac Implants. 1999 Nov-Dec;14(6):798-810.
  • Soykan E. İmplant çevresindeki farklı kemik defektlerinde fonksiyonel kuvvetlerin oluşturduğu stres dağılımının sonlu elemanlar stres analiz yöntemi ile değerlendirilmesi. An- kara Üniversitesi Dişhekimliği Fakültesi Peri- odontoloji Anabilim Dalı Doktora Tezi. 2002.