Evaluation of thermal properties of soils amended with microplastics, vermicompost and zeolite using experimental and modeling data

Evaluation of thermal properties of soils amended with microplastics, vermicompost and zeolite using experimental and modeling data

The thermal properties of soils can be influenced by additives of different origins (non-organic, organic and mineral) and roles in soil quality. This study aims to evaluate the effects of microplastics, vermicompost, and zeolite on the thermal properties of two soil types using a combination of experimental data and modeling approaches. Laboratory experiments were conducted using surface layer samples of a clay soil (Vertic Phaeozem) and a loam soil (Haplic Cambisol). Each additive was applied at a mass ratio of 10% to the soil samples. The thermal conductivity (λ), thermal diffusivity (D) and volumetric heat capacity (Cv) were measured with the SH1 sensor of a KD2Pro device during the drainage process of the soil samples at different matric potentials. The relationships between λ, Cv, D, gravimetric water content, and matric suction (h) were analyzed using linear and polynomial regression models (for Cv and D) and a closed-form equation (for λ). The fitted models exhibited small errors, such as a root mean square error (RMSE) of 0.03-0.06 W m-1 K-1, and high coefficient of determination R2>0.9. The effects of the different additives on water retention, λ, Cv and D were found to be specific to each soil type and depended on the properties of both the soil and the additives. These findings highlight the significance of additives in modifying soil thermal properties and emphasize the importance of considering the interactions between soil characteristics and additive properties. The combination of experimental data and modeling approaches provides valuable insights into understanding the complex dynamics of soil thermal properties and the potential impacts of additives on soil functionality and quality.

___

  • Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water content. Biosystems Engineering 86(1): 97-102.
  • Campbell, G. S., Norman, J. M., 1998. Introduction to environmental biophysics. 2nd edition. Springer-Verlag New York, Inc. 286p.
  • Campbell, G.S., Jungbauer, J.D. Jr, Bidlake, W.R., Hungerford, R.D., 1994. Predicting the effect of temperature on soil thermal conductivity. Soil Science 158(5): 307–313.
  • de Vries, D.A., 1963. Thermal properties of soil. In: Physics of Plant Environment. Wijk, W.R. (Ed.). North-Holland, Amsterdam, pp. 210–235.
  • Decagon Devices 2016. KD2 Pro thermal properties analyzer operator’s manual, Decagon Devices Inc., Pullman, WA.
  • Dilkova, R., Kerchev, G., Anachkova, Sv.,1982. Characterization of physical properties of zeolite regarding its use as conditioner of coarse textured soils. Soil Science Agrochemistry 17(4): 111-116.
  • Doneva, K., Rubio, C., 2015. Effects of a wood pine polypropylene compound on the soil thermal conductivity as a function of water content. International Journal of Innovative Science, Engineering and Technology 2(10): 401-410.
  • Filcheva, E.G., Tsadilas, C.D., 2002. Influence of cliniptilolite and compost on soil properties. Communications in Soil Science and Plant Analysis 33(3-4): 595-607.
  • Goswami, L., Nath, A., Sutradhar, S., Bhattacharya, S. S., Kalamdhad, A., Vellingiri, K., Kim, K. H., 2017. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. Journal of Environmental Management 200: 243-252.
  • He, D., Luo, Y., Lu, S., Liu, M., Song, Y., Lei, L., 2018. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry 109: 163-172.
  • ISO 11274: 1998. Soil Quality-Determination of the water retention characteristics-Laboratory methods. Available at [Access date: 17.03.2023]: https://www.iso.org/standard/19252.html
  • ISO 11277: 2009. Soil Quality-Determination of particle size distribution in mineral soil material. Method by sieving and sedimentation. Second edition. Available at [Access date: 17.03.2023]: https://www.iso.org/standard/54151.html#:~:text=ISO%2011277%3A2009%20specifies%20a,deal%20with%20less%20common%20soils.
  • IUSS Working Group WRB. 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria. 234p. Available at [Access date: 17.03.2023]: https://eurasian-soil-portal.info/wp-content/uploads/2022/07/wrb_fourth_edition_2022-3.pdf
  • Jakkula, V. S., Wani, S. P., 2018. Zeolites: Potential soil amendments for improving nutrient and water use efficiency and agriculture productivity. Scientific Reviews and Chemical Communications 8(1): 1-15.
  • Katsarova, A., 2021. Evaluation of different amendments and their influence on soil properties for qualitative and safety production. PhD Thesis, Institute of Soil Science, Agrotechnology and Plant Protection N. Poushkarov, Sofia, Bulgaria, 127p.
  • Khosravi Shakib, A., Rezaei Nejad, A., Khandan Mirkohi, A., Kalate Jari, S., 2019. Vermicompost and manure compost reduce water-deficit stress in pot marigold (Calendula officinalis L. cv. Candyman Orange). Compost Science and Utilization 27(1): 61-68.
  • Kodešová, R., Vlasáková, M., Fér, M., Teplá, D., Jakšík, O., Neuberger, P., Adamovský, R., 2013. Thermal properties of representative soils of the Czech Republic. Soil and Water Research 8(4): 141-150.
  • Kononova, M., 1963. Soil Organic Matter. AN SSR, Moscow. 544р.
  • Lu, N., Dong, Y., 2015. Closed-form equation for thermal conductivity of unsaturated soils at room temperature. Journal of Geotechnical and Geoenvironmental Engineering 141(6): 04015016.
  • Lu, S., Lu, Y., Peng, W., Ju, Z., Ren, T., 2019. A generalized relationship between thermal conductivity and matric suction of soils. Geoderma 337: 491-497.
  • Lu, S., Ren, T., Gong, Y., Horton, R., 2007. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal 71(1): 8–14.
  • Lu, Y., Liu, X., Heitman, J. L., Horton, R., Ren, T., 2016. Determining soil bulk density with thermo-time domain reflectometry: A thermal conductivity based approach. Soil Science Society of America Journal 80(1): 48-54.
  • Mady, A.Y., Shein, E., 2018. Estimating soil thermal diffusivity using Pedotransfer functions with nonlinear regression. The Open Agriculture Journal 12(1): 164-173.
  • Markert, A., Bohne, K., Facklam, M., Wessolek, G., 2017. Pedotransfer functions of soil thermal conductivity for the textural classes sand, silt, and loam. Soil Science Society of America Journal 81(6): 1315-1327.
  • McCumber, M.C., Pielke, R.A., 1981. Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. Journal of Geophysical Research 86(10): 9929–9938.
  • Ochsner, T.E., Horton, R., Ren, T., 2001a. A new perspective on soil thermal properties. Soil Science Society of America Journal 65(6): 1641-1647.
  • Ochsner, T.E., Horton, R., Ren, T., 2001b. Simultaneous water content, air-filled porosity, and bulk density measurements with thermo-time domain reflectometry. Soil Science Society of America Journal 65(6): 1618–1622.
  • Qi, R., Jones, D. L., Li, Z., Liu, Q., Yan C., 2020. Behavior of microplastics and plastic film residues in the soil environment: A critical review. Science of the Total Environment 703: 134722.
  • Rubio, C. M., Marcinek, M., Rodríguez, L., 2016. An approaching to understand the heat transfer in polymers. International Journal of Scientific Engineering and Applied Science 2(12): 179-184.
  • Rubio, C. M., Rodríguez, L., 2017. Comparing thermal resistivity between semi-crystalline and amorphous polymers. World Wide Journal of Multidisciplinary Research and Development 3(11): 40-45.
  • Shein, E.V., Mady, A.Y., 2016. Soil thermal parameters assessment by direct method and mathematical models. Journal of Soil Science and Environmental Management 7(10): 166-172.
  • Song, X., Liu, M., Wu, D., Griffiths, B. S., Jiao, J., Li, H., Hu, F., 2015. Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology 89: 25-34.
  • Tong, B., Kool, D., Heitman, J.L., Sauer, T.J., Gao, Z., Horton, R., 2020. Thermal property values of a central Iowa soil as functions of soil water content and bulk density or of soil air content. European Journal of Soil Science 71(2): 169-178.
  • Usowicz, B., 1992. Statistical–physical model of thermal conductivity in soil. Polish Journal of Soil Science 25(1): 25–34.
  • Usowicz, B., Lipiec, J., Lukowski, M., Marczewski, W., Usowicz, J., 2016. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil and Tillage Research 164: 45-51.
  • Usowicz, B., Lipiec, J., Usowicz, J. B., Marczewski, W., 2013. Effects of aggregate size on soil thermal conductivity: Comparison of measured and model-predicted data. International Journal of Heat and Mass Transfer 57(2): 536-541.
  • Usowicz, B., Lukowski, M., Lipiec, J., 2014. Thermal properties of soils: effect of biochar application. Geophysical Research Abstracts EGU General Assembly 16: 9533.
  • van Genuchten, M. T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44(5): 892-898.
  • Wessolek, G., Bohne, K., Trinks, S., 2023. Validation of soil thermal conductivity models. International Journal of Thermophysics 44(2): 20.
  • Wiśniewska, K. Rubio, C.M., 2020. Transferring heat thermal pulse through polymer materials. World Journal of Engineering Research and Technology 6(1): 266-283.
Eurasian Journal of Soil Science-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Avrasya Toprak Bilimleri Dernekleri Federasyonu
Sayıdaki Diğer Makaleler

Morphologic and chemical characterizations of some salep orchids

Omer CALİSKAN, Ayşegül BEŞİR, Münir ANIL, Coşkun GÜLSER, Fehmi YAZICI, Dursun KURT

Evaluation of thermal properties of soils amended with microplastics, vermicompost and zeolite using experimental and modeling data

Katerina DONEVA, Milena KERCHEVA, Carles RUBİO

Biodiversity of symbiotic microbes in association with Sulla aculeata spp. from semi-arid regions of Morocco

Anass EL YEMLAHİ, Samia HAMANE, Amin LAGLAOUİ, Mohammed BAKKALİ, Abdelhay ARAKRAK

Assessing the efficacy of ameliorants on saline-sodic soils: Laboratory insights for reclamation strategies

Nurzikhan SEİTKALİ, Askhat NAUSHABAYEV, Shynar MAZKİRAT, Tursunay VASSİLİNA

Soil fertility evaluation and land-use effects on soil properties, carbon and nitrogen sequestration in the rainforest of Nigeria

Ugochukwu Nnamdi ONYEGBULE, Stanley Uchenna ONWUDİKE, Nkechinyere OPARA-NADİ, Olive OPARA-NADİ

Effects of different fertilization practices on CH4 and N2O emissions in various crop cultivation systems: A case study in Kazakhstan

Maira KUSSAİNOVA, Maxat TOİSHİMANOV, Gulnaz ISKAKOVA, Nursultan NURGALİ, Jiquan CHEN

Assessing the biomass yield and nitrogen fixation of Lupinus angustifolius varieties as green manure in Jalisco, Mexico

Juan Francisco Zamora NATERA, Isidro Zapata HERNÁNDEZ, Carlos Ernesto Aguilar JİMÉNEZ, Franklin B. Martínez AGUİLAR, José Galdámez GALDÁMEZ

Prediction of some selected soil properties using the Hungarian Mid-infrared spectral library

Mohammed Ahmed MOHAMMEDZEİN, Adam CSORBA, Brian ROTİCH, Phenson Nsima JUSTİN, Hanaa Tharwat MOHAMED, Erika MİCHELİ

Impact of varied NPK fertilizer application rates and seed quantities on barley yield and soil nutrient availability in chestnut soil of Azerbaijan

İslamzade İSLAMZADE, Gatiba HASANOVA, Sevinj ASADOVA

Comprehensive assessment and information database on saline and waterlogged soils in Kazakhstan: Insights from Remote Sensing Technology

Nurgali BEKTAYEV, Kamshat MANSUROVA, Sagynbay KALDYBAYEV, Konstantin PACHİKİN, Kenzhe ЕRZHANOVA, Botagoz ABSATOVA