Texture contrast soils (TCS) as indicators of eolian dust inputs in the coastal area of west central Senegal, West Africa

Different hypotheses have been addressed to explain the origin of texture contrast soils (TCS) in coastal regions. Our study investigates the TCS in the coastal region of west central Senegal, West Africa, in order to appreciate the influence of eolian dust inputs on their formation and characteristics. Nine soil profiles, from a levee to backswamp toposequence, three on each landscape position; floodplain, low terrace and middle terrace, were investigated. Soil profiles were described according to the World Reference Base. Particle-size analysis was performed by wet-sieving for the sand fraction and pipette analysis for the silt and clay fractions. Elements were determined in finely powdered soil mixed with cellulose in a ratio of 2:1. In this work, we focused principally on elemental zircon (Zr) and Titan (Ti). Our results show the presence of TCS in the coastal area of west central Senegal. We attribute the formation of these TCS to mainly two different sources of soil material: marine and continental. Marine sediments build the floodplain profiles and the subsoil of low terrace profiles, while the colluvial material derived from continental uplands form the middle terrace profiles and the topsoil of low terrace profiles. The main finding remains the influence of eolian dust inputs on the formation of TCS in this coastal area. Evidence of dust addition was confirmed by the uniformity of soil parent material tested through mS/(cU+mU) and Ti/Zr ratios. Such knowledge enhances understanding of local pedogenesis and may help develop sustainable soil management strategies.

___

  • Abate, N., Kibret, K., 2016. Effects of land use, soil depth and topography on soil physicochemical properties along the toposequence at the Wadla Delanta Massif, Northcentral Highlands of Ethiopia. Environment and Pollution 5 (2): 57-71.
  • Ahn, P.M., 1970. West African Soils. Vol.1, 3rd Edition, Oxford University Press, Oxford GB, 315p.
  • Alexander, J.D., Beavers, A.H., Johnson, P.R., 1962. Zirconium content of coarse silt in loess and till of Wisconsin age in northern Illinois. Soil Science Society of America Journal 26(2): 189-191.
  • Allen, B.L., Hajek, B.F., 1989. Mineral occurrence in soil environments. In: Minerals in Soil Environments. Dixon, J.B., Weed, S.B. (Eds.). Book Series No.1, Soil Science Society of America, Madison, Wisconsin, USA, pp. 199-278.
  • Bald M. 2012. Development of textural differentiation in soil: a quantitative analysis. Thesis for an Honours Degree in Environmental Geoscience, University of Adelaide, Australia, 68p.
  • Barusseau, J.P., Ba, M., Descamps, C., Diop, E.H.S., Giresse, P., Saos, J.L., 1995. Coastal evolution in Senegal and Mauritania at 103, 102 and 101-year scales: Natural and human records. Quaternary International 29-30: 61-73.
  • Baskan, O., Dengiz, O., Gunturk, A., 2016. Effects of toposequence and land use-land cover on the spatial distribution of soil properties. Environmental Earth Science 75:448.
  • Birkeland, P.W., 1999. Soils and geomorphology. 3rd edition; Oxford University Press, Oxford, England, 448p.
  • Chapman, S.L., Horn, M.E., 1968. Parent material uniformity and origin of silty soils in northwest Arkansas based on zirconium-titanium contents. Soil Science Society of America Journal 32(2): 265-271.
  • Dengiz, O., Hüseyin, Ş., 2018. Effect of toposequences on geochemical mass balance and clay mineral formation in soils developed on basalt parent material under subhumid climate condition. Indian Journal of Geo Marine Sciences 47 (9): 1809-1820.
  • Diop, E.S., 1986. Tropical Holocene estuaries. Comparative study of the physical geography features of the rivers from the south of Saloum to the Mellcoree (Guinea Republic). These es Sciences, University L Pasteur Strasbourg, France, 379p.
  • Fall, A.C.A.L., Montoroi, J.P., Stahr, K., 2014. Coastal acid sulfate soils in the Saloum River basin, Senegal. Soil Research 52(7): 671–684.
  • Faye, S., Faye, S.C., Ndoye, S., Faye, A., 2003. Hydrogeochemistry of the Saloum (Senegal) superficial coastal aquifer. Environmental Geology 44: 127-136.
  • Goudie, A.S., Middleton, N.J., 2001. Saharan dust storms: nature and consequences. Earth-Science Reviews 56(1-4): 179-204.
  • Harden, J., 1988. Genetic interpretations of elemental and chemical differences in a soil chronosequence, California. Geoderma 43: 179-193.
  • Hardie, M., Doyle, R.B., Cotching, W., Lisson, S., 2012. Subsurface Lateral Flow in Texture-Contrast (Duplex) Soils and Catchments with Shallow Bedrock. Applied and Environmental Soil Science Article ID 861358.
  • Herrmann, L., 1996. Staubdeposition auf Boden West-Afrikas. Eigenschaften und Herkunftsgebiete der Staube und ihr Einflus auf Boden- und Standortseigenschaften. Hohenheimer Bodenkundliche Hefte 36, Hohenheim, 239 p,
  • IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. 192p. Available at [access date: 14.03.2019]: http://www.fao.org/3/i3794en/I3794en.pdf
  • Jaenicke, R., Schutz, L., 1978. Comprehensive study of physical and chemical properties of the surface aerosols in the Cape Verde Islands region. Journal of Geophysical Research 83(C7): 3585-3599.
  • Jones, M.J., Wild, A., 1975. Soils of the West African Savanna. Oxford University Commonwealth Agricultural Bureaux, England, 246 p.
  • Kalck, Y., 1978. Evolution des zones de mangroves à Sénégal au Quaternaire recent : Etudes géologiques et géochimiques et géochimiques. Unpublished Thesis, University of Louris Pasteur, Strasbourg, France.
  • Langley-Turnbaugh, S.J, Bockheim, J.G., 1997. Time-dependent changes in pedogenic processes on marine terraces in coastal Oregon. Soil Science Society of American Journal 61(5): 1428-1440.
  • Lappartient, J.R., 1985. Le Continental Terminal et le Pléistocène ancien du Bassin sénégalo-mauritanien. Stratigraphie, sédimentation, diagenèse, altérations. Reconstitution des paléorivages au travers des cuirasses. Thesis, University. Aix-Marseille III, 294 p.
  • Lézine, A-M., 1997. Evolution of the West African mangrove during the Late Quaternary: A review. Géographie physique et Quaternaire 51: 405–414.
  • McTainsh, G.H., Nickling, W.G., Lynch, A.W., 1997. Dust deposition and particle size in Mali, West Africa. Catena 29: 307-322.
  • Michel, P., 1975. Les bassins des fleuves Senegal et Gambie: étude géomorphologique. Revue Géographique de l'Est Année 15(1-2) : 237-242 [in French].
  • Middleton, N.J., Goudie, A.S., 2001. Saharan dust: sources and trajectories. Transactions of the Institute of British Geographers 26(2): 165-181.
  • Milne, G., 1936. A provisional Soil Map of East Africa (Kenya, Uganda, Tanganyika and Zanzibar) with Explanatory Memoir. Amani Memoirs, London.
  • Mulugeta, D., Sheleme, B., 2010. Characterization and Classification of Soils along the Toposequence of Kindo Koye Watershed in Southern Ethiopia. East African Journal of Sciences 4(2): 65-77.
  • Paton, T.R, Humphries, G.S., Mitchell, P.B., 1995. Soils: A New Global View. CRC Press, New York, USA. 83p.
  • Petters, S.W., 1991. Regional geology of Africa. Springer, Heidelberg, 722p.
  • Phillips, J.D., 2001. Contingency and generalization in pedology, as exemplified by texture-contrast soils. Geoderma 102(3-4): 347-370.
  • Phillips, J.D., 2007. Development of texture contrast soils by a combination of bioturbation and translocation. Catena 70(1): 92–104.
  • Prospero, J.M., Carlson, T.N., 1972. Vertical and aeral distribution of Saharan Dust over the Western Equatorial North Atlantic Ocean. Journal of Geophysical Research 77(27): 5255-5265.
  • Prospero, J.M., Glaccum, R.A., Nees, R.T., 1981. Atmospheric transport of soil dust from Africa to South America. Nature 289: 570-572.
  • Raeside, J.D., 1959. Stability of index minerals in soils with particular reference to quartz, zircon, and garnet. Journal of Sedimentary Petrology 29(4): 493-502.
  • Reheis, M.C., 1990. Influence of climate and eolian dust on the major-element chemistry and clay mineralogy of soils in the Northern Bighorn Basin, USA. Catena 17(3): 219-248.
  • Retallack, G.J., 1990. Soils of the past. An Introduction to Paleopedology. John WileySons. Inc., London, UK. 520p.
  • Schaetzl, R.J., Anderson. S., 2005. Soils: Genesis and geomorphology. University Press, Cambridge, UK, 817p.
  • Schlichting, E., Blume, H.P., Stahr, K., 1995. Bodenkundliches Praktikum. Blackwell Wissenschafts-Verlag, Berlin, Wien, 295p.
  • Simonson, R.W., 1995. Airborne dust and its significance to soils. Geoderma 65(1-2): 1-43.
  • Smeck, N.E., Wilding, L.P., 1980. Quantitative evaluation of pedon formation in calcareous glacial deposits in Ohio. Geoderma 24(1): 1-16.
  • Tijjani, M.A., Hassan, I.M., 2017. Variability of some soil properties along toposequence on a basaltic parent material of Vom, Plateau State, Nigeria. International Journal of Scientific & Technology Research 6 (2): 22-26
  • Tunçay, T., Dengiz, O., Imamoğlu, A., 2020. Influence of toposequence on physical and mineralogical properties of soils developed on basaltic parent material under sub-humid terrestrial ecosystem. Journal of Agricultural Sciences 26(1): 104-116.
  • Wagner, S., 2009. Soil (Chrono-) Sequences on Marine Terraces – Pedogenesis in two coastal areas of Basilicata and Agrigent, Southern Italy. Hohenheimer Bodenkundliche Hefte 93, Hohenheim, 314p.
  • Walker, P.H., Chartres, C.J., Hutka, J., 1988. The effect of eolian accessions on soil development on granitic rocks in South-Eastern Australia. I. Soil morphology and particle-size distributions. Australian Journal of Soil Research 26(1): 1-16.
  • Wright, J.B., Hastings, D.A., Jones, W.B., Williams, H.R., 1985. Geology and mineral resources of West Africa. George Allen & Unwin Publishers. London, UK. 188p.