Effects of Cultivar, Maturity Index and Growing Region on Fatty Acid Composition of Olive Oils

Effects of Cultivar, Maturity Index and Growing Region on Fatty Acid Composition of Olive Oils

Olive oil is an important food for people the countries surrounding the Mediterranean Sea and the presence of biologically important minor constituents such as high content of healthy monounsaturated fatty acid (FA). Virgin olive oil (VOO) is valued for its organoleptic and nutritional characteristics, and is resistant to oxidation due to presence of high monounsaturated fatty acid (MUFAs) and low polyunsaturated fatty acid (PUFAs) content. The fatty acid composition of olive oils is influenced by many factors including, climate conditions, geographic area, cultivar, fruit ripeness and agricultural practices. The health benefits of extra virgin olive oil (EVOO) consumption have been related to its well-balanced FA composition. Major FAs in olive oils are oleic (55–85%), palmitic (7.5–20%), linoleic (7.5–20%), stearic (0.5–5%), palmitoleic (0.3–3.5%), and linolenic (0.0–1.5%) acids, and traces of myristic, arachidic, and margaric acids have also been found. Oleic acid is one of the most important FAs in olive oils due to having the nutritional wealth and support for oxidative stability. In consequence, the olive oils differ in composition of fatty acid mainly depending on variety, maturity index and growing region. Therefore, this review may contribute good information about the effect of these principal factors on the fatty acid composition of olive oils.

___

  • Amanpour A., Kelebek H., Kesen S. & S. Selli, 2016. Characterization of Aroma-Active Compounds in Iranian cv. Mari Olive Oil by Aroma Extract Dilution Analysis and GC–MS-Olfactometry, Journal of American Oil Chemist Society, 93, 1595–1603.
  • Ayton J. G. 2006. The Effect of Harvest Timing and Irrigation on the Quality of Olive Oil. MSc. Thesis, University of Western Sydney, Australia.
  • Bendini A., Cerretani L., Carrasco-Pancorbo A., Gomez-Caravaca A. M., Segura-Carretero A., Fernández-Gutiérrez A. & Lercker G. 2007. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade, Molecules, 12, 1679–1719.
  • Benito M., Oria R. & Sánchez-Gimeno, A. C. 2010. Characterization of the Olive Oil from Three Potentially Interesting Varieties from Aragon (Spain), Food Science Technology International, 16, 523–530.
  • Borges T. H., Pereira J. A., Cabrera-Vique C., Lara L., Oliveira A. F. & Seiquer I. 2017. Characterization of Arbequina Virgin Olive Oils Produced in Different Regions of Brazil and Spain: Physicochemical Properties, Oxidative Stability and Fatty Acid Profile, Food Chemistry, 215, 454–462.
  • Ceci L. N. & Carelli A. A. 2007. Characterization of Monovarietal Argentinian Olive Oils From New Productive Zones, Journal of American Oil Chemist Society, 84, 1125-1136.
  • Douzane M., Nouani A., Dako E. & Bellal M. 2012. Influence of the Variety, the Crop Year and the Growing on the Fatty Acid and Tocopherols Composition of Some Algerian Virgin Olive Oils, African Journal of Agricultural Research, 7, 4738-4750.
  • FAO. 2014. Agricultural statistical database. http://www.faostat.fao.org (accessed 24 October 2017).
  • Hernández M. L., Padilla M. N., Sicardo M. D., Mancha M. & Martínez-Rivas J. M. 2011. Effect of Different Environmental Stresses on the Expression of Oleate Desaturase Genes and Fatty Acid Composition in Olive Fruit, Phytochemistry, 72, 178–187.
  • Ilyasoglu H. & Ozcelik B. 2011. Determination and Seasonal Changes in Olive Oil by Using Differential Scanning Calorimetry Heating Thermograms, Journal of American Oil Chemist Society, 88, 907-913.
  • IOOC. 2011. International Olive Council, Guide for the Determination of the Characteristics of Oil-Olives, COI/OH/Doc. No 1, November (http://www.internationaloliveoil.org). (accessed 24 October 2017).
  • Kelebek H., Kesen S. & Selli S. 2015. Comparative Study of Bioactive Constituents in Turkish Olive Oils by LC-ESI/MS/MS, International Journal Food Properties, 18, 2231–2245.
  • Mailer R. J., Ayton J. & Graham K. 2010. The İnfluence of Growing Region, Cultivar and Harvest Timing on the Diversity of Australian Olive Oil, Journal of the American Oil Chemists Society, 87, 877–884.
  • Morello J. R., Jose-Motilva M., Tovar M. J. & Romero M. P. 2004. Changes in Commercial Virgin Olive Oil (cv. Arbequina) During Storage, with Special Emphasis on the Phenolic Fraction, Food Chemistry, 85, 357-364.
  • Ninni V. 1999. A Statistical Approach to the Biosynthetic Route of the Fatty Acids in Olive Oil: Crosssectional and Time Series Analyses, Journal of the Science of Food and Agriculture, 79, 2113-2121.
  • Olias J. M., Perez A. G., Rios J. J. & Sanz L. C. 1993. Aroma of Virgin Olive Oil: Biogenesis of the Green Odor Notes, Journal of Agricultural and Food Chemistry, 41, 2368–2373.
  • Pardo J. E., Cuesta M. A. & Alvarruiz A. 2007. Evaluation of Potential and Real Quality of Virgin Olive Oil from the Designation of Origin Aceite Campo de Montiel (Ciudad Real, Spain), Food Chemistry, 100, 977-984.
  • Parkinson L. & Russell K. 2014. Oleocanthal, a Phenolic Derived from Virgin Olive Oil: A Review of the Beneficial Effects on İnflammatory Disease, International Journal of Molecular Sciences, 15, 12323–12334.
  • Piravi-Vanak Z., Ghasemi J. B., Ghavami M., Ezzatpanah H. & Zolfonoun E. 2012. The Influence of Growing Region on Fatty Acids and Sterol Composition of Iranian Olive Oils by Unsupervised Clustering Methods, Journal of the American Oil Chemists Society, 89, 371-378.
  • Reboredo-Rodríguez P., González-Barreiro C., Cancho-Grande B., Fregapane G., Salvador M. D. & Simal-Gándara J. 2015. Characterisation of Extra Virgin Olive Oils From Galician Autochthonous Varieties and Their Co-Crushings with Arbequina and Picual cv., Food Chemistry, 176, 493–503.
  • Rigane G., Sayadi S. & Bouaziz M. 2012. Identification and Antioxidants Activity of Flavonoids from Dhokar and Gemri-Dhokar Olive Cultivars Growing in South of Tunisia. In: Bioactive Compounds. Editor: A. Bitterlich and S. Fischl. 333-340.
  • Rondanini D. P., Castro D. N., Searles P. S. & Rousseaux M. C. 2011. Fatty acid profiles of varietal virgin olive oils (Olea europaea L.) from mature orchards in warm arid valleys of Northwestern Argentina (La Rioja), Grasas y aceites, 62, 399–409.
  • Rondanini D. P., Castro D. N., Searles P. S. & Rousseaux M. C. 2014. Contrasting Patterns of Fatty Acid Composition and Oil Accumulation During Fruit Growth in Several Olive Varieties and Locations in a Non-Mediterranean Region, European Journal of Agronomy, 52, 237–246.
  • Ruiz-Dominguez M. L., Raigon M. D. & Prohens J. 2013. Diversity for Olive Oil Composition in a Collection of Varieties from the Region of Valencia (Spain), Food Research International, 54, 1941-1949.
  • Salvador M. D., Aranda F., Gomez-Alonso S. & Fregapane G. 2003. Influence of Extraction System, Production Year and Area on Cornicabra Virgin Olive Oil: A Study of Five Crop Seasons, Food Chemistry, 80, 359-366.
  • Sevim D., Tuncay O. & Köseoglu O. 2013. The Effect of Olive Leaf Addition on Antioxidant Content and Antioxidant Activity of Memecik Olive Oils at Two Maturity Stages, Journal of American Oil Chemist Society, 90, 1359–1369.
  • Torres M. M., Pierantozzi P., Cáceres M. E. , Labombarda P., Fontanazza G. & Maestri D. M. 2009. Genetic and Chemical Assessment of Arbequina Olive Cultivar Grown in Córdoba Province, Argentina, Journal of the Science of Food and Agriculture, 89, 523–530.
  • Vekiari S. A., Oreopoulou V., Kourkoutas Y., Kamoun N., Msallem M., Psimouli V. & Arapoglou D. 2010. Characterization and Seasonal Variation of the Quality of Virgin Olive Oil of the Throumbolia and Koroneiki Varieties from Southern Greece, Grasas y Aceites, 61, 221–231.
  • Waterman E. & Lockwood B. 2007. Active Components and Clinical Applications of Olive Oil, Alternative Medicine Review, 12, 331–342.
  • Zarrouk W., Haddada F. M., Baccouri B., Oueslati I., Taamalli X. F., Lizzani-Cuvelier L., Daoud D. & Zarrouk M. 2008. Characterization of Virgin Olive Oil from Southern Tunisia, European Journal of Lipid Science and Technology, 110, 81-88.