The Analysis of Elementary Mathematics Preservice Teachers' Spatial Orientation Skills with SOLO Model

SOLO modeli Piaget'in gelişim teorisi üzerine yaptığı çalışmalar ayrıntılı bir şekilde incelenerek geliştirilmiş olup, model öğrencilerin kendilerini bir seviyeye yerleştirmek yerine problemlere verdikleri cevapları bir seviyeye yerleştirmektedir. Ayrıca farklı sınıf seviyelerinde ve farklı disiplinlerde öğrenme çıktılarının gözlemlenen yapılarını belirlemeye yardımcı olmaktadır. Benzer şekilde SOLO taksonomisi matematikte de öğrencilerin belli kavramlarla ilgili anlamalarını ve matematiksel düşünme becerilerini tanımlamak ve yorumlamak için kullanılmaktadır. SOLO modelinde yer alan her bir düşünme evresi beş alt seviyeyi içermektedir. Bunlar yapı öncesi, Tek yönlü Yapı, Çok Yönlü Yapı, İlişkisel yapı ve Genişletilmiş Soyut yapı seviyeleridir. Cevapların karmaşıklığı arttıkça seviye yükselmektedir. Diğer taraftan uzamsal yeteneğin bir bileşeni olan uzamsal yönelim becerisi ise bir cismin görüntüsünü başka bir açıdan zihinde canlandırabilme becerisidir. Literatürde öğretmen adaylarının uzamsal yeteneklerini çeşitli şekillerde inceleyen çalışmalar bulunmaktadır. Bununla birlikte öğretmen adaylarının uzay geometri derslerinde öğrenme-öğretme süreçlerinde başarılı olabilmeleri için gerekli geometrik alt yapılarının ve seviyelerinin ne olduğunu bilmek faydalı olacaktır. Böylelikle öğretmen adayları mesleğe başlamadan önce eksiklerini görme ve tamamlama imkânı bulacaklardır. Bu çalışma da ise diğer çalışmalardan farklı olarak ilköğretim matematik öğretmen adaylarının uzamsal yönelim becerileri SOLO Modeli aracılığıyla incelenmiştir. Araştırmanın Amacı: Çalışmanın temel amacı ilköğretim matematik öğretmen adaylarının uzamsal yönelim becerilerini SOLO modeline göre incelemektir. Bu amaçla "İlköğretim matematik öğretmen adaylarının uzamsal yönelim becerileri SOLO Taksonomisine göre hangi seviyelerde yer almaktadır?" problemine cevap aranmıştır. Ayrıca öğrencilerin cevaplarının Purdue Uzamsal Görselleştirme Testinde belirlenen seviyelerine göre (düşük-orta-yüksek) hangi SOLO düzeylerinde yer aldığı araştırılmıştır. İlaveten öğretmen adaylarının farklı boyutlar arasındaki (iki boyuttan iki boyuta, iki boyuttan üç boyuta, üç boyuttan iki boyuta, üç boyuttan üç boyuta) sorulara verdikleri cevaplar da SOLO düzeylerine göre sınıflandırılmıştır. Araştırmanın Yöntemi: İlköğretim matematik öğretmen adaylarının uzamsal yönelim becerilerini inceleyen bu çalışma nitel bir araştırmadır. Seçilen bir konunun derinlemesine ayrıntılı bir şekilde araştırılmasına olanak veren durum çalışması yöntem olarak belirlenmiştir. Çalışmaya bir devlet üniversitesinde ilköğretimEurasian Journal of Educational Research 235 matematik öğretmenliği programının üçüncü sınıfında öğrenim gören öğretmen adayları katılmıştır. Öncelikle seksen bir öğretmen adayına Purdue Uzamsal Görselleştirme (PUGT) testi uygulanmış ve sonrasında bu teste göre üç farklı seviyede seçilen toplam altı öğretmen adayıyla klinik mülakatlar gerçekleştirilmiştir. Klinik mülakatlarda kullanılmak üzere öğrencilerin uzamsal yönelim becerilerini farklı boyutlar arasında ölçen "Geometri Başarı Testi" araştırmacılar tarafından hazırlanmıştır. Öğrencilerin cevapları pilot çalışma sonrasında oluşturulan değerlendirme ölçeğine göre uygun SOLO seviyelerine yerleştirilmiştir. Klinik mülakatlar ile nitel olarak elde edilen verilerin analizinde betimsel analiz yapılmıştır. Geometri Başarı testinde yer alan sekiz soruya altı öğrencinin verdiği toplam kırk sekiz cevap değerlendirilmiştir. Araştırmanın Bulguları: İlköğretim matematik öğretmen adayları uzamsal yeteneğin bileşenlerinden biri olan uzamsal yönelim becerileri açısından ağırlıklı olarak Çok Yönlü Yapı seviyesindedir. İki boyuttan iki boyuta, iki boyuttan üç boyuta, üç boyuttan iki boyuta ve üç boyuttan üç boyuta uzamsal yönelim becerilerini ölçen sorulara ilköğretim matematik öğretmen adaylarından gelen cevaplar en fazla İlişkisel yapı seviyesinde en az da Tek Yönlü Yapı seviyesinde yer almaktadır. Uzamsal görselleştirme testine göre düşük ve orta seviyede olan öğrencilerin cevapları çoğunlukla Çok Yönlü Yapı seviyesinde iken yüksek seviyedeki öğrencilerin cevapları İlişkisel yapı seviyesindedir. Araştırmadan elde edilen diğer bulgulardan bazıları şunlardır: Uzamsal yönelim becerilerinde Purdue Uzamsal Görselleştirme testine göre yüksek düzeyde yer alan öğrencilerin cevapları iki boyuttan iki boyuta ve iki boyuttan üç boyuta düşünme gerektiren sorularda ilişkisel yapı seviyesindedir. Çalışmaya katılan tüm öğrencilerin üç boyuttan iki boyuta ve üç boyuttan üç boyuta geçişi gerektiren sorulara verdikleri cevaplara bakıldığında ise genel olarak Çok Yönlü Yapı seviyesinde oldukları görülmektedir. İki boyuttan üç boyuta düşünmeyi gerektiren sorulara öğretmen adaylarının verdikleri cevaplar çoğunlukla İlişkisel yapı seviyesinde iken, üç boyuttan üç boyuta düşünmeyi gerektiren sorularda cevapların seviyesi Çok Yönlü Yapı şeklindedir. Araştırmanın Sonuçları ve Önerileri: İlköğretim matematik öğretmen adayları SOLO taksonomisine göre genel olarak Çok Yönlü Yapı seviyesinde olduklarından, öğretmen adaylarının uzamsal yönelimin ilişkili kavramları açısından sahip oldukları bilgileri tutarlı bir yapı içerisinde birleştirmede başarılı olamadıkları görülmektedir, sadece birbirinden bağımsız durumları ayrı ayrı değerlendirebilmektedirler. Düşük ve orta seviyedeki öğretmen adaylarının cevapları çoğunlukla Çok Yönlü Yapı seviyesinde yer almaktadır dolayısıyla derinlemesine değil daha çok yüzeysel kalan bir öğrenmeye sahiptirler ayrıca öğretmen adayları problemlerin çözümünde birden fazla veriyi kullanmaya çalışmıştır. Elde edilen bulgulara göre sorulardaki üç boyutluluk seviyesi arttıkça öğrencilerin verdikleri cevapların SOLO taksonomisine göre seviyeleri düşmektedir. Farklı çalışmalarda daha çok öğrenci ile ya da daha farklı branşlardaki öğretmen adaylarıyla ya da hizmet içinde yer alan öğretmenlerle çalışılabilir. İleriki çalışmalar için öneri olarak elde edilen veriler farklı bir taksonomi ile değerlendirilebilir ve SOLO ta

İlköğretim Matematik Öğretmen Adaylarının Uzamsal Yönelim Becerilerinin SOLO Modeli ile İncelemesi

The SOLO model places responses provided by students on a certain level instead of placing students there themselves. SOLO taxonomy, including five sub-levels, is used for determining observed structures of learning outcomes in various disciplines and grade levels. On the other hand, the spatial orientation skill is the ability to visualize an object's view from a different perspective. A number of studies on examining preservice teachers' spatial abilities have been performed. In this study, elementary mathematics preservice teachers' spatial orientation skills as components of spatial skills were evaluated through the SOLO model in ways that are different from other researches. Purpose of the Study: The purpose of this study was to analyze the spatial orientation skills of elementary mathematics preservice teachers by using the SOLO model. In addition, responses of students who were at specified levels (low-middle-high) according to the Purdue Spatial Visualization Test scores were also classified. Preservice teachers' responses between different dimensions were also examined according to SOLO taxonomy. Method: The present research was a qualitative study and a case study method was employed. The sample of the study included junior elementary mathematics preservice teachers from a state university. Firstly, the Purdue Spatial Visualization Test was carried out with eightyone students and then clinical interviews were conducted with six students according to three levels which were specified by looking at the results of the test in this study. The students' answers were placed into a suitable SOLO level according to an evaluation scale by analyzing each of the eight questions used in the Geometrical Achievement Test prepared by the researchers. Findings: Elementary mathematics preservice teachers' responses in a geometrical achievement test relating to spatial orientation skills were generally on a multistructural level according to SOLO taxonomy. Whereas the responses of preservice teachers who were on the low and middle levels were mostly on a multistructural level, the responses of the students on the high level were on a relational level. In addition, the responses of preservice teachers from two-dimension to three-dimension were mostly on a relational level and the responses from three-dimension to two-dimension were mostly on a multistructural level. Conclusion and Recommendations: Results obtained indicated that preservice teachers were not generally successful at combining their information within a consistent structure in terms of spatial orientation skills. They could only evaluate situations which were independent from each other separately. Therefore, students had surface learning rather than deep learning. Obtained data can be evaluated with a different taxonomy and a comparison could be made between these two models in further studies

___

  • Baki, A., & Guven, B. (2007). Dinamik geometri yazilimi Cabri 3D'nin ögretmen adaylarinin uzamsal yetenekleri uzerine etkisi [The effect of the dynamic geometry software Cabri 3D on preservice teachers' spatial ability]. The Proceedings of 7th International Educational Technology Conference, 116-120. Biggs, J. B., & Collis, K. F. (1991). Multimodal learning and the quality of intelligent behavior. In H. Rowe (Eds.), Intelligence: Reconceptualization and measurement (pp. 64-67). New Jersey: Lawrence Erlbaum Assoc. Bodner, G. M., & Guay, R. B. (1997). The Purdue visualization of rotations test. The Chemical Educator, 2(4), 1-17. Celik, D. (2007). Öğretmen adaylarının cebirsel düşünme becerilerinin analitik incelenmesi [The analytic overview of algebraic thinking skills of pre-service teachers]. Unpublished doctoral dissertation, Karadeniz Technical University, Trabzon, Turkey. Chick, H. (1998). Cognition in the formal modes: research mathematics and the SOLO taxonomy. Mathematics Education Research Journal, 10(2), 4-26. Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education (5th edition). London: Routledge Contero, M., Naya, F., Saorin, P. J. K., & Conesa, J. (2005). Improving visualization skills in engineering education. Computer Graphics in Education, 25(5), 24-31. Dudley, D., & Baxter, D. (2009). Assessing levels of student understanding in preservice teachers using a two-cycle SOLO model. Asia-Pacific Journal of Teacher Education, 37(3), 283-293. Dursun, Ö. (2010). The relationships among preservice teachers' spatial visualization ability, geometry self-efficacy, and spatial anxiety. Unpublished doctoral dissertation, Middle East Technical University, Ankara, Turkey. Goktepe Yildiz, S., Goktepe Korpeoglu, S. & Korpeoglu, E. (2015). The examination of mental rotation abilities of elementary mathematics education and mathematical engineering students. The Turkish Online Journal of Educational Technology (TOJET), Special Issue 2 for INTE, 612-618. Goktepe, S. (2013). Ilkogretim matematik ögretmen adaylarinin uzamsal yeteneklerinin SOLO modeli ile incelenmesi [The examination of elementary
  • mathematics preservice teachers' spatial abilities with SOLO model]. Unpublished master thesis, Marmara University, Istanbul, Turkey. Groth, R. E. (2002). Characterizing secondary students' understanding of measures of central tendency and variation. Proceedings of the XXIV PME-NA, Athens Georgia, 1, 247-259. Groth, R. E., & Bergner, J. A. (2006). Preservice elementary teachers' conceptual and procedural knowledge of mean, median, and mode. Mathematical Thinking and Learning, 8(1), 37-63. Guven, B. (2006). Ögretmen adaylarinin kuresel geometri anlama duzeylerinin karakterize edilmesi [Characterizing student mathematics teachers' levels of understanding of spherical geometry]. Unpublished doctoral dissertation, Karadeniz Technical University, Trabzon, Turkey. Halloway, W. (2012). Quality learning with reference to the solo model. Retrieved October 12, 2012 from http://www.une.edu.au/education/research/bhutan/publications/bhutansolo halloway.pdf Hattie, J. A. C., & Brown, G. T. L. (2004). Cognitive Processes in asTTle: The SOLO Taxonomy. AsTTle Technical Report 43, University of Auckland, Ministry of Education. Jones, G. A., Thornton, C. A., Langrall, C. W., Mooney, E. S., Perry, B., & Putt, I. J. (2000). A framework for characterizing children's statistical thinking. Mathematical Thinking and Learning, 2(4), 269-307. Jurdak, M. (1991). Van Hiele levels and the SOLO taxonomy. International Journal of Mathematical Education in Science and Technology, 22(1), 57-60. Kalayci, Ş. (2010). Spss uygulamali çok degiskenli istatistik teknikleri [Statistical techniques with multiple variables and SPSS] (5th edition). Ankara: Asil Yayınları. Lam, P., & Foong, Y. (1996). Rasch analysis of math SOLO taxonomy levels using hierarchical items in testlets. (ERIC Document Reproduction Service no. ED398271). Lian, L. H., & Idris, N. (2006). Assessing algebraic solving ability of form four students. International Electronic Journal of Mathematics Education (IEJME), 1(1), 55-76. McGee, M. G. (1979). Human spatial abilities: psychometric studies and environmental, genetic, hormonal and neurological influences. Psychological Bulletin, 86(5), 889-918. Miles, M. B., & Huberman, A. M. (1994). An expanded source books qualitative data analysis (second edition). London: SAGE publications. Money, E. S. (2002). A framework for characterizing middle school students' statistical thinking. Mathematical Thinking and Learning, 4(1), 23-63
  • Nagy-Kondor, R. (2014). Importance of spatial visualization skills in Hungary and Turkey: Comparative Studies. Annales Mathematicae et Informaticae, 43, 171- 181. Ozdemir, A. S., & Goktepe Yildiz, S. (2015). The examination of elementary mathematics pre-service teachers' spatial abilities. Procedia-Social and Behavioral Sciences, 174, 594-601. Patton, M. Q. (2002). Qualitative research & evaluation methods (3rd edition). Thousand Oaks, CA: Sage. Pegg, J., & Coady, C. (1993). Identifying SOLO levels in the formal mode. Proceedings of the 17th International Conference for the Psychology of Mathematics Education, 1, 212-219. Pegg, J., & Davey, G. (1998). Interpreting student understanding in geometry: A synthesis of two models. In R. Lehrer & D. Chazen (Ed.), Designing learning environments for developing understanding of geometry and space (pp.109-135). NJ: Lawrence Erlbaum Associates, Mahwah. Sezen Yuksel, N., & Bulbul, A. (2014). Test development study on the spatial visualization. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 8(2), 124-142. Sezen Yuksel, N., & Bulbul, A. (2015). Test development study on the mental rotation ability. Anthropologist, 20(1, 2), 128-139. Strong, S., & Smith, R. (2002). Spatial visualization: Fundamentals and trends in engineering graphics. Journal of Industrial Technology, 18(1), 2-6. Unal, H. (2005). The influence of curiosity and spatial ability on preservice middle and secondary mathematics teachers' understanding of geometry. Electronic Theses, Treatises and Dissertations. Paper 1461. Retrieved October 06, 2015 from http://diginole.lib.fsu.edu/cgi/viewcontent.cgi?article=4967&context=etd Wongyai, P., & Kamol, N. (2012). A framework in characterizing lower secondary school students' algebraic thinking. Retrieved November 21, 2012 from http://www.icme-organisers.dk/tsg09/ Yildirim, A., & Simsek, H. (2011). Sosyal bilimlerde nitel araştirma yöntemleri [Qualitative research methods in social sciences] (8th edition). Ankara: Seçkin Yayınları. Yolcu, B. (2008). Altinci sinif ögrencilerinin uzamsal becerilerinin somut modeller ve bilgisayar uygulamalari ile geliştirme calısmalari [The development studies of sixth grade students' spatial skills with concrete models and computer applications]. Unpublished master thesis, Eskişehir Osmangazi University, Eskişehir, Turkey.