NANE UÇUCU YAĞININ MIKROKAPSÜLASYONUNDA ZEIN-KAZEIN KOMPLEKSİNİN KULLANIMI

Bu çalışmada yaygın olarak kullanılan nane uçucu yağının farklı oranlarda zein-kazein kompleksi ile kaplanması ve elde edilen mikrokapsüllerin etkinlik ve salınım özellikleri incelenmiştir. Sadece zein ile kaplanan nane uçucu yağı ile zein-kazein kompleksi ile kaplanan uçucu yağların etkinlik ve salınım düzeyleri kıyaslanmıştır. Zein ve kazeinde bulunan aminoasitler sayesinde ortaya çıkan hidrofilik/hidrofobik özellikler aracılığıyla apolar yapıdaki nane uçucu yağının kapsül formunda kaplanması ile etkinliklerinin arttırılması planlanmıştır. Nane uçucu yağı mikrokapsülasyonu için zein kaplama materyaline %1, %3, %5, %7, %9, %11, %13 ve %15 oranlarında kazein ilavesi gerçekleştirilmiştir. Farklı oranlardaki zein-kazeinle yapılan mikro-enkapsüllerin etkinlik değeri en yüksek  %54.66 etkinlik ile %13’lük zein-kazein formülasyonu ile sağlanırken kaplama materyali olarak %100 zein kullanılan mikrokapsülasyonların etkinlik değeri % 46 olarak tespit edilmiştir. Ayrıca salınım hızı testinde nane uçucu yağının mikroenkapsüllerden salınımı 9 günün sonunda % 42.75 olarak belirlenmiştir
Anahtar Kelimeler:

Zein, Kazein, Nane uçucu yağı

DEVELOPMENT OF ZEIN-CASEIN MICROCAPSULES FOR ENCAPSULATION OF MINT ESSENTIAL OIL

In this study, the efficiency and release properties of microcapsules obtained by coating zein-casein complex at different ratios of mint essential oil have been investigated. Efficiency and release levels of mint essential oil coated with zein and essential oils coated with zein-casein complex were compared. It is planned to increase their activity by encapsulating the mint essential oil in the apolar structure in capsule form by the hydrophilic / hydrophobic properties which arise from the zein and its amino acids. In this study, casein additions of 1%, 3%, 5%, 7%, 9%, 11%, 13% and 15% were applied to the zein coating material for mint essential oil microcapsulation. The efficiency of microencapsulation with only zein as the coating material was determined to be 46%, while the activity value of microencapsulated with 13% with casein-zein formulation was determined at 54.66 %. In addition, in the release rate test, the release of mint essential oil from the microcapsules was completed by providing 42.75% release over 9 days.

___

  • 1. Hussain AI, Anwar F, Nigam PS, Ashraf M, Gilani AH. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four mentha species. J Sci Food Agric 2010; 90: 1827-1836.
  • 2. Gulluce M, Shain F, Sokmen M, Ozer H, Daferera D, Sokmen A. Antimicrobial and antioxidant properties of the essential oils and methanol extract from mentha longifolia l. spp. longifolia. Food Chem 2007; 103: 1449-1456.
  • 3. Bakkalı F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – a review. Food Chem Toxicol 2008; 46: 46–475.
  • 4. Mimica-Dukić N, Bugarin D, Grbović S, Mitić-Ćulafić D, Vuković-Gačić B, Orčić D, Jovin E, Couladis M. Essential oil of myrtus communis l. as a potential antioxidant and antimutagenic agents. Molecules 2010; 15: 2759–2770.
  • 5. Pascal JD, Stanich K, Girard B, Mazza G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int J Food Microbiol 2002; 74: 101– 109.
  • 6. Moldão-Martins M, Beirão-da-Costa S, Neves C, Cavaleiro C, Salgueiro L, Beirão-da-Costa ML. Olive oil flavoured by essential oils of mentha × piperite and thymus mastichina L. Food Qual Prefer 2004; 15: 447-452.
  • 7. Muthuselvi L, Dhathathreyan A. Colloid Surf B 2006; 51: 39-43.
  • 8. Wu Y, Luo Y, Wang Q. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid-liquid method LWT-Food Sci Technol 2012; 48: 283-290.
  • 9. Hayaloglu A, Ozer B. Peynir Biliminin Temelleri. In: Hayaloglu A, Ozer B. editörler. Kazein Kimyası ve Sütün Pıhtılaşma Mekanizması. Sidas Yayıncılık, Türkiye, 2011. 53-56.
  • 10. Parris N, Cooke PH, Hicks KB. Encapsulation of essential oils in zein nanospherical particles. J Agric Food Chem 2005; 53: 4788–4792.
  • 11. Quispe-Condori S, Saldaña MDA, Temelli F. Microencapsulation of flax oil with zein using spray and freeze drying. LWT Food Sci Technol 2011; 44: 1880–1887.
  • 12. Schrooyen PMM, Meer van der R, Kruif CGD. Microencapsulation: Its application in nutrition. Proceed Nutr Soc 2001; 60: 475–479.
  • 13. Fang Z, Bhandari B. Encapsulation of polyphenols. Trends in Food Sci Technol 2010; 21: 510–523.
  • 14. Krochta JM, De Mulder-Johnston C. Edible and biodegradable polymer films: challenges and opportunites. J Food Technol 1997; 51: 61-74.
  • 15. Krochta JM. 1997, Edible Protein Films and Coatings, In: Food Proteins and Their Applications, Damodaran, S., Paraf, A. (Eds.), Marcek Dekker Inc., U.S.A., 1997. 529-549.
  • 16. Shukla R, Cheryan M. Zein: the industrial protein from corn. Ind Crops Prod 2001; 13: 171–192.
  • 17. Dalgleish DG. On the structural models of bovine casein micelles—review and possible improvements. Soft Matter 2011; 7: 2265-2272.
  • 18. Hamaker B, Campanella O, Mauer L, Mejia C. Leavened products made from nonwheat cereal protein. 2009. United States Patent Application 20090304861.
  • 19. Chen H, Zhang Y, Zhong Q. Physical and antimicrobial properties of spray-dried zein–casein nanocapsules with co-encapsulated eugenol and thymol. J Food Eng 2015; 144: 93-102.
  • 20. Zhong QX, Tian HI, Zivanovic S. Encapsülation of fish oil in solid zein particles by liquid – liquid dispersion. J Food Process Preserv 2009; 33: 255-270.
  • 21. Beristain CI, Garcia HS, Carter VEJ. Spray dried encapsulation of cardamom (Elettaria Cardamomum) essential oil with mesquite (Prosopis Juliflora) gum. LWT Food Sci Technol 2001; 34: 398–401.
  • 22. Gennadios A, McHugh TH, Weller CL, Krochta JM. Edible coatings and films based on proteins. In: Krochta JM, Baldwin EA, Nisperos-Carriedo M, editors. Edible coatings and films to improve food quality. Lancaster, Pa.: Technomic Publ. Co. 1994. 201–277.
  • 23. Audic JL, Chauffeur B. 2005. Influence of plasticisers and crosslinking on the properties of biodegradable films made from sodium caseinate. Eur Polym J 2005: 41: 1934–1942.
  • 24. Arvanitoyannis I, Biliaderis CG. Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chem 1998; 62: 333-342.
  • 25. Janjarasskul T, Krochta JM. Edible packaging materials. Annu Rev Food Sci Technol 2010; 1: 415-448.
  • 26. Ebert S. Koo CKW, Weiss J, Mc Clements DJ. Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: Caseinate-coated zein nanoparticles. Food Res Int 2017; 92: 48–55.
  • 27. LuoY, Zhang B, Whent M, Yu L, Wang Q. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in-v,tro controlled release study. Coll Sur B: Biointerfaces 2011; 85: 145-152.
  • 28. Blanco D, Alonso MJ. Protein encapsulation and release from poly (lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Eu J Pharm Biopharm 1998; 45: 285–294.