Endoparazitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae) venomunun glioblastoma hücreleri üzerindeki sitotoksisitesi

Beyin kanseri tedavisinde, antikanser ajanlar kullanılarak kanser hücrelerinin proliferasyonunun inhibe edilmesi öncelikli bir yaklaşımdır. Endoparazitoid arıların venomu da, yeni terapötik ajanların geliştirilmesine aday olabilir. Böylece bir endoparasitoid tür olan Pimpla turionellae L. (Hymenoptera: Ichneumonidae)’nın venomu, çeşitli mekanizmalarla geleneksel tedavilere direnç gösteren glioblastoma üzerinde antikanserojen bir etkiye sahip olabilir. Bu nedenle, çalışmamızda endoparazitoid venomunun glioblastoma hücreleri üzerindeki sitotoksisitesinin araştırılması amaçlanmıştır. Bu amaçla, P. turionellae venomunun sitotoksik potansiyeli, metil tiyazolil tetrazolyum testi (MTT assay) ile sıçan C6 glioblastoma hücre hattı üzerinde değerlendirildi. P. turionellae venomu 15 ± 2 günlük dişi bireylerden izole edildi. farklı konsantrasyonlardaki P. turionellae venomu (176.6-1.83 μg/ml) in vitro olarak C6 sıçan glioblastoma hücrelerine uygulandı. MTT testinden elde edilen bulgulara göre, uygulanan parazitoid venom konsantrasyonuna bağlı olarak C6 hücrelerinin in vitro canlılığının önemli ölçüde azalmıştır. Bu nedenle, P. turionellae zehiri zamana ve doza bağlı bir şekilde hücreler üzerinde sitotoksik aktivite göstermiştir. Sonuç olarak, endoparazitoid arı venomunun sitotoksisitesine ait elde edilen bu bulgular, malignant tümörlere karşı yeni kemoterapötik ajanların araştırılmasında primer veri olarak kullanılabir.

CYTOTOXICITY OF VENOM FROM ENDOPARASITOID PIMPLA TURIONELLAE L. (HYMENOPTERA: ICHNEUMONIDAE) ON GLIOBLASTOMA CELLS

In the treatment of brain cancer, the inhibition of cancer cell proliferation using anti-cancer agents is a priority approach. Venom of endoparasitoid wasps also may be a candidate for the development of new therapeutic agents. In this context, endoparasitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae) venom may have an anti-carcinogenic effect on glioblastoma that resists traditional therapies by various mechanisms. Therefore, we aimed to investigate endoparasitoid venom cytotoxicity on glioblastoma cells. For this purpose, the cytotoxic potential of venom from P. turionellae was evaluated on rat C6 glioblastoma cell lines with methyl thiazolyl tetrazolium assay (MTT assay). P. turionellae venom was isolated from 15±2 day-old females. Different concentrations of P. turionellae venom (176.6-1.83 μg/ml) were applied to C6 rat glioblastoma cells in vitro. Results of MTT assay showed that the viability of C6 cells in vitro significantly decreased depending on the parasitoid venom concentrations. Therefore, P. turionellae venom showed cytotoxic activity in a time- and dose-dependent manner. In conclusion, the results from this research could be used as primary data of venom cytotoxicity for investigation of new chemotherapeutic agents against malignant tumors.

___

  • Danneels EL, Gerlo S, Heyninck K, Van Craenenbroeck, K, De Bosscher K, Haegeman G, De Graaf DC. How the Venom from the Ectoparasitoid Wasp Nasonia vitripennis Exhibits Anti-inflammatory Properties on Mammalian Cell Lines. PLoS ONE 2014; 9(5): e96825.
  • Shanbhag VKL. Applications of snake venoms in treatment of cancer. Asian Pac J Trop Biomed 2015; 5(4): 275-276.
  • Sarfo-Poku C, Eshun O, Lee KH. Medical application of scorpion venom to breast cancer: A mini-review. Toxicon 2016; 122: 109-112.
  • Rady I, Siddiqui IA, Rady M, Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Letters 2017; 402: 16-31.
  • Sisakht M, Mashkani B, Bazi A, Ostadi H, Zare M, Avval FZ, Sadeghnia HR, Mojarad M, Nadri M, Ghorbani A, Soukhtanloo M. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells. Rev bras farmacogn 2017; 27: 324–328.
  • Khamis AAA, Ali EMM, El-Moneim MAA, Abd-Alhaseeb MM, El-Magd MA, Salim EI. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed Pharmacother 2018; 105: 1335–1343.
  • Liana W, Lian H., Lic Q, Hua A, Liua S. The venom of spider Haplopelma hainanum suppresses proliferation and induces apoptosis in hepatic cancer cells by caspase activation in vitro. J Ethnopharmacol 2018; 225: 169–177.
  • Kerkkampa H, Bagowskib C, Koolc J, van Soolingena B, Vonk FJ, Vlecken D. Whole snake venoms: Cytotoxic, anti-metastatic and antiangiogenic properties. Toxicon 2018; 150: 39–49.
  • Endstrom A. Venomous and poisonous animals. Krieger Publishing Company, Florida, 51, 1992.
  • Riekkinen P, Ikonen S. Effects of apamin on memory processing of hippocampal-lesioned mice. Eur J Pharmacol 1999; 382: 151-156.
  • Gerristen VB. Why pooh luvvs hunny. Protein Spotlight 2001; 12: 1-2.
  • Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology & Therapeutics 2007; 115: 246–270.
  • Uçkan F, Sinan S, Savasci S, Ergin E. (2004). Determination of venom components from the endoparasitoid wasp Pimpla turionellae L. (Hymenoptera: Ichneumonidae). Ann. Entomol. Soc. Am. 2004; 97 (4): 775-780.
  • Uçkan F, Ergin E, Rivers DB, Gencer N. Qualitative and quantitative characterization of venom from the endoparasitic wasp Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Arch Insect Biochem Physiol 2006; 63 (4): 177-187.
  • Moreau SJM, Asgari S. Venom Proteins from Parasitoid Wasps and Their Biological Functions. Toxins 2015; 7: 2385-2412.
  • dos Santos-Pinto JRA, Perez-Riverol A, Lasa AM, Palma MS. Diversity of peptidic and proteinaceous toxins from social Hymenoptera venoms. Toxicon 2018; 148: 172-196.
  • Cunha AOS, Mortari MR, Oliveira L, Oliveira R, Carolino G, Coutinho-Netto J, dos Santos WF. Anticonvulsant effects of the wasp Polybia ignobilis venom on chemically induced seizures and action on GABA and glutamate receptors. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141(1), 50-57.
  • Hoshina MM, Santos LD, Palma MS, Marin-Morales MA. Cytotoxic, genotoxic/antigenotoxic and mutagenic/ antimutagenic effects of the venom of the wasp Polybia paulista. Toxicon 2013; 72: 64–70.
  • Liu X, Chen D, Xie L, Zhang R. Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in-vitro and growth of murine B16 melanomas in-vivo. J Pharm Pharmacol 2002; 54 (8): 1083-1089.
  • Biddlestone-Thorpe L, Sajjad M, Rosenberg E, Beckta JM, Valerie NCK, Tokarz M, Adams B, Wagner AF, Khalil A, Gilfor D, et al. (2013). ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clinic Cancer Res 2013; 19(12): 3189–3200.
  • Mehta M, Brem S. (2014). Recent Updates in the Treatment of Glioblastoma: Introduction. Seminars in Oncology 2014; 41(6): 1-3.
  • Vesely DL, Vesely BA, Eichelbaum EJ, Sun Y, Alli AA, Gower WR. Four cardiac hormones eliminate up to two-thirds of human breast cancers in athymic mice. In Vivo 2007; 21(6): 973–978.
  • Er A, Uçkan F, Rivers DB, Sak O. Cytotoxic effects of parasitism and application of venom from the endoparasitoid Pimpla turionellae on hemocytes of the host Galleria mellonella. J Appl Entomol 2011; 135 (3), 225 -236.
  • Ergin E, Uçkan F, Rivers DB. Biochemical characterization and mode of action of venom from the endoparasitoid wasp Pimpla turionellae L. Research Signpost 2007; 37/661 (2): 129-160.
  • Terwilliger TC, Weissman L, Eisenberg D. The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities. Biophysical Journal 1982; 37(1): 353-361.
  • Banks BE, Brown C, Burgess GM, Burnstock G, Claret M, Cocks TM. Apamin blocks certain neurotransmitter-induced increases in potassium permeability. Nature 1979; 282 (5737): 415−417.