Bazı 3-imino-4-sübstitüe-1,2,5-tiroidyazolidin 1,1-dioksitlerin antibakteriyel etkisi

Organosülfür bileşiklerinin işlevselliği, mevcut tıbbi kimyada önemli bir terapötik madde sınıfını oluşturur. Özellikle sülfa ilaçlar adı verilen sülfonamitler hem kemoterapötik ajanlar hem de tıp için geliştirilen etkili antibakteriyel türevler olarak gerçekleştirilmiştir. Sülfonamidlerle aynı ailedeki sülfamitler benzer biyolojik aktivitelere sahiptir. Araştırmamızda, beş üyeli siklosülfamitler olan bazı 3-imino-4-ikame edilmiş-1,2,5-tiadiazolidin 1,1-dioksitler (ISTD'ler-4a-d, dört örnek) ile çalışılmıştır. Bu bileşikler daha önce sentezlenmiş ve yapısal olarak karakterize edilmiştir. Bu çalışmanın amacı, Minimum inhibisyon konsantrasyon (MİK) değerlerini ve bu ISTD bileşiklerinin antibakteriyel etkilerini Bacillus subtilis NRRL B-209, Escherichia coli ATCC®25922, Micrococcus luteus NRRL B-1018, Nocardia abscessus DSM 44432, Nocardia cyriacigeorgica DSMZ 44484, Pseudomonas aeruginosa NRRL B-2679 Staphylococcus aureus ATCC®6538, Streptomyces murinus ISP 5091 üzerinde araştırmaktır.

ANTIBACTERIAL EFFECT OF SOME 3 -IMINO-4-SUBSTITUTED-1,2,5- THIADIAZOLIDINE 1,1-DIOXIDES

Organosulfur compound's functionality constitutes an essential class of therapeutic agents in current medicinal chemistry. Especially sulfonamides called sulfa drugs were performed as both chemotherapeutic agents and useful antibacterial derivatives developed for medicine. The sulfamides in the same family with the sulfonamides have similar biological activities. In our research, it was studied with some 3-imino-4-substituted-1, 2, 5-thiadiazolidine 1,1-dioxides (ISTDs- 4a-d, four samples) that are five-membered cyclosulfamides. These compounds were previously synthesized and structurally characterized. The goals of this study are to investigate minimum inhibition concentration (MIC) values and antibacterial effects of these ISTDs compounds on Bacillus subtilis NRRL B-209T, Escherichia coli ATCC®25922T, Micrococcus luteusNRRL B-1018T, Nocardia abscessus DSM 44432T, Nocardia cyriacigeorgica DSMZ 44484T, Pseudomonas aeruginosa NRRL B-2679T Staphylococcus aureus ATCC®6538T, Streptomyces murinus ISP 5091T.

___

  • Winum J Y, Scozzafava A, Montero J L,Supuran C T. Therapeutic potential of sulfamides as enzyme inhibitors. Journa., 2006. 26(6): p. 767-92.
  • Bendjeddou A, Djeribi R, Regainia Z,Aouf N. N, N’-substituted 1, 2, 5 thiadiazolidine 1, 1-dioxides: synthesis, selected chemical and spectral proprieties and antimicrobial evaluation. Journa., 2005. 10(11): p. 1387-1398.
  • Villalba M L, Palestro P, Ceruso M, Gonzalez Funes J L, Talevi A, Bruno Blanch L, Supuran C T,Gavernet L. Sulfamide derivatives with selective carbonic anhydrase VII inhibitory action. Journa., 2016. 24(4): p. 894-901.
  • Abbaz T, Bendjeddou A, Gouasmia A, Bouchouk D, Boualleg C, Kaouachi N, Inguimbert N,Villemin D. Synthesis, Characterization and Antibacterial Activity of Cyclic Sulfamide Linked to Tetrathiafulvalene (TTF). Journa., 2014. 11(1): p. 59-63.
  • Spaltenstein A, Almond M R, Bock W J, Cleary D G, Furfine E S, Hazen R J, Kazmierski W M, Salituro F G, Tung R D,Wright L L. Novel inhibitors of HIV protease: design, synthesis and biological evaluation of picomolar inhibitors containing cyclic P1/P2 scaffolds. Journa., 2000. 10(11): p. 1159-62.
  • Zhong J, Gan X, Alliston K R,Groutas W C. Design, synthesis, and in vitro evaluation of inhibitors of human leukocyte elastase based on a functionalized cyclic sulfamide scaffold. Journa., 2004. 12(3): p. 589-93.
  • Kim S J, Park H B, Lee J S, Jo N H, Yoo K H, Baek D, Kang B-w, Cho J-H,Oh C-H. Novel lβ-methylcarbapenems having cyclic sulfonamide moieties: Synthesis and evaluation of in vitro antibacterial activity. Journa., 2007. 42(9): p. 1176-1183.
  • Supuran C T, Scozzafava A,Agents M. Carbonic anhydrase inhibitors. Journa., 2001. 1(1): p. 61-97.
  • Gediz Erturk A,Bekdemir Y. Microwave-Assisted Synthesis of Some Substituted Sulfamides. Journa., 2014. 189(2): p. 285-292.
  • Castro J L, Baker R, Guiblin A R, Hobbs S C, Jenkins M R, Russell M G N, Beer M S, Stanton J A, Scholey K, Hargreaves R J, Graham M I,Matassa V G. Synthesis and Biological-Activity of 3-[2-(Dimethylamino)Ethyl]-5-[(1,1-Dioxo-5-Methyl-1,2,5-Thiadiazolidin-2-Yl)-Methyl]-1h-Indole and Analogs - Agonists for the 5-Ht1d Receptor. Journa., 1994. 37(19): p. 3023-3032.
  • Turnidge J,Paterson D L. Setting and revising antibacterial susceptibility breakpoints. Journa., 2007. 20(3): p. 391-408, table of contents.
  • Bell S, Gatus B, Pham J,Rafferty D. Antibiotic susceptibility testing by the CDS method. Journa., 1999.
  • Arslan N B, Erturk A G, Kazak C,Bekdemir Y. 3-Amino-4-[4-(dimethyl-amino)-phen-yl]-4,5-dihydro-1,2,5-thia-diazole 1,1-dioxide. Journa., 2011. 67(Pt 7): p. o1736.
  • Lee C H, Korp J D,Kohn H. 3-Oxo-and 3-imino-4-substituted-1, 2, 5-thiadiazolidine 1, 1-dioxides: synthesis, spectral properties, and selected chemistry. Journa., 1989. 54(13): p. 3077-3083.
  • CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, Ninth Edition (M07-A9). 2012, CLSI Wayne, PA, USA.
  • CLSI. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes—Second Edition: Approved Standard M24-A2. 2011, CLSI Wayne, PA, USA.
  • CLSI. Development of in vitro susceptibility testing criteria and quality control parameters; approved guideline, Fourth Edition (M23) 2016, CLSI Wayne, PA, USA.
  • CLSI. Performance standards for antimicrobial susceptibility testing; twenty-six informational supplement (M100S). 2016, CLSI Wayne, PA, USA.
  • Wiegand I, Hilpert K,Hancock R E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Journa., 2008. 3(2): p. 163-75.
  • Brown-Elliott B A, Biehle J, Conville P S, Cohen S, Saubolle M, Sussland D, Wengenack N, Kriel K, Bridge L, McNulty S, Vasireddy R,Wallace R J, Jr. Sulfonamide resistance in isolates of Nocardia spp. from a US multicenter survey. Journa., 2012. 50(3): p. 670-2.
  • Clark N M, Reid G E,Practice A S T I D C o. Nocardia infections in solid organ transplantation. Journa., 2013. 13 Suppl 4(s4): p. 83-92.
  • Schlaberg R, Fisher M A,Hanson K E. Susceptibility profiles of Nocardia isolates based on current taxonomy. Journa., 2014. 58(2): p. 795-800.
  • Welsh O, Vera-Cabrera L,Salinas-Carmona M C. Current treatment for nocardia infections. Journa., 2013. 14(17): p. 2387-98.
  • Southwick F S. Infectious Diseases: Nocardia Species. Overview: What Every Clinician Needs To Know. [Access date: 19.02.2019]; Available from: https://www.clinicalpainadvisor.com/infectious-diseases/nocardia-species/article/610646/?utm_source=TrendMD&DCMP=OTC-CPA_trendmd&dl=0.
  • Argyropoulou I, Geronikaki A, Vicini P,Zani F. Synthesis and biological evaluation of sulfonamide thiazole and benzothiazole derivatives as antimicrobial agents. Journa., 2009. 6: p. 89-102.
  • Bendjeddou A, Abbaz T, Ayari A, Benahmed M, Gouasmia A,Villemin D. Antibacterial Activity and Global Reactivity Descriptors of some Newly Synthesized Unsymmetrical Sulfamides. Journa., 2016. 32(2): p. 799-806.
  • Berredjem M, Bouchareb F, Kaki S A, Dekhil M,Aouf N E. Synthesis and antibacterial activity of novel N-acylsulfonamides. Journa., 2017. 10: p. S1095-S1099.
  • Gediz Ertürk A., Atli Şekeroğlu Z., Kontaş Yedier S.,V. Ş. 3-Amino-4-[4-(Dimetilamino)Fenil]-4,5-Dihidro-1,2,5-Tiyadiazol 1,1-Dioksit Bileşiğinin Kromozom Hasarı Üzerindeki Etkisi. in Uluslararası Katılımlı “5. İlaç Kimyası: İlaç Etkin Maddesi Tasarımı, Sentezi, Üretimi Ve Standardizasyonu Kongresi 30.03.2017 - 02.04.2017 of Conference. Turkey, Antalya.