PLASTİK ATIKLARDAN KARBON NANOTÜP (CNT) ÜRETİMİ ÜZERİNE BİR DEĞERLENDİRME

Plastikler günlük yaşantıda ve endüstriyel üretimde her alanda yoğun bir şekilde kullanılmaktadır. İhtiyaçları karşılamak için kullanılan plastiklerin çoğu kısa sürede atığa dönüştüğü için plastik atık miktarı da oldukça fazla olmaktadır. Mevcut durumda bir kısmı geri dönüştürülen, yakılan ya da depolanan plastiklerin hem çevresel hem de sağlık açısından yarattığı olumsuzlukları azaltmak adına bu atıkları ürüne dönüştürebilecek alternatif yöntemler araştırılmalı ve uygulanmalıdır. Bu noktadan hareketle, bu çalışmada plastik atıkların değerli bir malzeme olan karbon nanotüp (CNT) üretiminde kullanımı ele alınmıştır. Plastik atıklarla ilgili mevcut veriler, uygulama alanları değerlendirilmiş, CNT üretimi ile ilgili kısa bir bilgi verilmiş ve bu proseste karbon kaynağı olarak plastik türlerinin kullanımı irdelenmiştir. 

AN EVALUATION OF CARBON NANOTUBE (CNT) PRODUCTION FROM PLASTIC WASTES

Plastics are heavily used in every field of daily life and industrial production. Most of the plastics used to meet the requirements are converted to waste in a short time, so the amount of plastic waste is considerably high. Alternative methods of converting these waste into product should be investigated and applied in order to reduce the environmental and health hazards of some recycled, burned or stored plastics in the current situation. From this point of view, this study deals with the use of plastic waste in the production of carbon nanotube (CNT), a valuable material. Present data and application areas related to plastic wastes were evaluated, brief information about CNT production was given and the use of plastic types as carbon source in this process was examined.

___

  • [1] Wu C, Nahil M.A, Miskolczi N, Huang J, Williams P.T. Production and application of carbon nanotubes,as a co-product of hydrogen from thepyrolysis-catalytic reforming of waste plastic. Process Saf Environ Prot 2016; 103: 107–114.
  • [2] Arnaiz N, Gomez-Rico M.F, Gullon I.M, Font R. Production of carbon nanotubes from polyethylene pyrolysis gas and effect of temperature. Ind Eng Chem Res 2013; 52: 14847-14854.
  • [3] Veksha A, Giannis A, Chang V.W.-C. Conversion of non-condensable pyrolysis gases from plastics intocarbon nanomaterials: Effects of feedstock and temperature. J Anal Appl Pyrolysis 2017; 124: 16–24.
  • [4] Liu J, Jiang Z, Yu H, Tang T. Catalytic pyrolysis of polypropylene to synthesize carbon nanotubes and hydrogen through a two-stage process. Polym Degrad Stab 2011; 96: 1711-1719.
  • [5] Acomb J.C, Wu C, Williams P.T. Effect of growth temperature and feedstock:catalyst ratio on the production of carbon nanotubes and hydrogen from the pyrolysis of waste plastics. J Anal Appl Pyrolysis 2015; 113: 231–238.
  • [6] Shah K.A, Tali B.A. Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 2106; 41: 67–82.
  • [7] Dasgupta K, Joshi J.B, Banerjee S. Fluidized bed synthesis of carbon nanotubes – a review. Chem Eng J 2011; 171: 841–869.
  • [8] Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek, O, Adam V, Kizek R. Methods for carbon nanotubes synthesis—review. J Mater Chem 2011; 21: 15872-15884.
  • [9] Hiremath N, Bath G. High-performance carbon nanofibers and nanotubes. In: Structure and Properties of High-Performance Fiber. Woodhead Publ Se Text, 2017. pp. 9-109.
  • [10] Szabó A, Perri C, Csató A, Giordano G, Vuono D, Nagy J.B. Synthesis methods of carbon nanotubes and related materials. Materials 2010; 3: 3092-3140.
  • [11] Tessonnier J.P, Sheng Su D. Recent progress on the growth mechanism of carbon nanotubes: A review. Chem Sus Chem 2011; 4: 824 – 847.
  • [12] Bazargan A, McKay G. A review – Synthesis of carbon nanotubes from plastic wastes. Chem Eng J 2012; 195–196: 377–391.
  • [13] Arena U, Mastellone M.L, Camino G, Boccaleri, E. An innovative process for mass production of multi-wall carbon nanotubes by means of low-cost pyrolysis of polyolefins. Polym Degrad Stab 2006; 91: 763-768.
  • [14] Pol V.G, Thiyagarajan P. Remediating plastic waste into carbon nanotubes. J Environ Monit 2010; 12: 455–459.
  • [15] Nie S, Yuan, S. The preparation of multi-wall carbon nanotubes by carbonizing low-density polyethylene composites. International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 29 August - 1 September 2012, Xi’an, China.
  • [16] Stefov V, Najdoski M, Bogoeva-Gaceva G, Buzarovska A. Properties assessment of multiwalled carbon nanotubes: A comparative study. Synth Met 2014; 197: 159–167.
  • [17] Wu C, Wang Z, Wang L, Williams P.T, Huang J. Sustainable processing of waste plastics to produce high yield hydrogen-rich synthesis gas and high quality carbon nanotubes. RSC Advances; 2012-2 (10): 4045 - 4047. ISSN 2046-2069.
  • [18] Mishra N, Shinde S, Vishwakarma R, Kadam S, Sharon M, Sharon M. MWCNTs synthesized from waste polypropylene plastics and its application in super-capacitors. AIP Conference Proceedings, Carbon Materials 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology, 1538, 228-236.
  • [19] Bajad G, Guguloth V, Vijayakumar R.P, Bose S. Conversion of plastic waste into CNTs using Ni/Mo/MgO catalyst-An optimization approach by mixture experiment. Fullerenes, Nanotubes, Carbon Nanostruct 2016; 24-2: 162-169.
  • [20] Bajad G, Jain R, Harhare W, Vijayakumar R.P, Bose S. Synthesis of fuel oil and carbon nanotubes in an autoclave using plastic waste as precursor. Mater Manuf Processes 2017; 32-5: 495-500.
  • [21] Yang Z, Zhang Q, Luo G, Huang J.Q, Zhao M.Q, Wei F. Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays. Appl Phys A 2010; 100: 533–540.
  • [22] Wu C, Nahil M.A, Miskolczi N, Huang J, Williams P.T. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Environ Sci Technol 2014; 48: 819−826.
  • [23] Rodriguez F, Cohen C, Ober C.K, Archer L. Principles of Polymer Systems. 6th ed. CRC Press, Taylor and Francis Group, Raton, Florida, 2015.
  • [24] Gilbert M. Plastics Materials: Introduction and Historical Development. Brydson’s Plastics Materials, Chapter 1: 1-18, 2017.
  • [25] Ronca S. Polyethylene. Brydson’s Plastics Materials, Chapter 10: 247-278. 2017.
  • [26] Mol J.C. Review – industrial applications of olefin metathesis. J Mol Catal A: Chem 2004; 213: 39–45.