A COMPARATIVE STUDY ON 2-(2-BENZYLIDENEHYDRAZINYL)-4-(3-METHYL-3- PHENYLCYCLOBUTYL) THIAZOLE : X-RAY, HF AND DFT STUDIES

Bileşiğimiz 2-(2- benziliden hidrazinil)-4-(3- metil-3-fenilsiklobütil) tiyazol (C21H21N3S) hazırlandı ve X-ışını tek kristal kırınımı IR ve NMR spektroskopileri ile karakterize edildi. Bileşiğimiz triklinik kristal sisteme sahip olup P1̅ uzay grubuna sahip olan kristalin parametreleri a = 5.8973(4) Å, b = 10.4727(18) Å, c = 15.136(2) Å , α = 86.505(13)˚, β = 84.242(12)˚, γ = 89.870(13)˚ ve Z = 2. Moleküler geometri 6-31G(d) baz seti ile Hartree-Fock ve Yoğunluk Fonksiyoneli Teorisi (DFT) (B3LYP) metodları kullanılarak optimize edildi. Moleküler elektrostatik potensiyel (MEP) ve sınır moleküler orbitaller (FMO) HF/6-31G(d) metodu ile hesaplandı

A comparative study on 2-(2-benzylidenehydrazinyl)-4-(3-methyl-3-phenylcyclobutyl) thiazole : X-ray, HF and DFT studies

The title compound, 2-(2-benzylidenehydrazinyl)-4-(3-methyl-3-phenylcyclobutyl)thiazole (C21H21N3S) was prepared and characterized by X – ray  single crystal diffraction and IR and NMR spectroscopies. The compound crystallizes in the triclinic space group P  with              a = 5.8973(4) Å, b = 10.4727(18) Å, c = 15.136(2) Å , α = 86.505(13)˚, β = 84.242(12)˚, γ = 89.870(13)˚ and Z = 2. The molecular geometry was optimized using Hartree-Fock and Density Functional Theory (DFT) (B3LYP) method with the 6-31G(d) basis set. Molecular electrostatic potentiel (MEP) and frontier molecular orbitals (FMO) were executed by the HF/6-31G(d) method.

___

  • Dehmlow EV, Schmidt S. Synthesis of Stereoisomeric 3-Substituted cyclobutanecarboxylic acid- derivatives. Liebigs Ann Chem 1990; 5: 411–414.
  • Coghi L, Lanfredi AMM, Tiripicchio A. Crystal and molecular structure of thiosemicarbazide hydrochloride. J Chem Soc Perkin Trans 1976; 2: 1808-1810.
  • Edward LR, Mladenova G. Enantiomerically Pure Cyclobutane Derivatives and Their Use in Organic Synthesis. Chem Rev 2003; 103: 1449–1484.
  • Namyslo JC, Kaufmann DE. The application of cyclobutane derivatives in organic synthesis. Chem Rev 2003; 103: 1485–1537.
  • Barone R, Chanon M, Gallo R. Aminothiazoles and Their Derivatives: The Chemistry of Heterocyclic Compounds. Interscience Publishers, Wiley, New York, 1979; 34: 9-366.
  • Lesyk R, Vladzimirska O, Holota S, Zaprutko L, Gzella A. New 5-substituted thiazolo[3,2- b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation. Eur J Med Chem 2007; 42: 641–648.
  • Lesyk R, Zimenkovsky B, Atamanyuk D, Jensen F, Kiec-Kononowicz K, Gzella A.Anticancer thiopyrano[2,3-d][1,3]thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico- chemical properties, and computational studies. Bioorg Med Chem 2006; 14: 5230–5240.
  • Siddiqui N, Ahsan W. Triazole incorporated thiazoles as a new class of anticonvulsants: design, synthesis and in vivo screening. Eur J Med Chem 2010; 45: 1536–1543.
  • Satoh A, Nagatomi Y, Hirata Y, Ito S, Suzuki G, Kimura T, Maehara S, Hikichi H, Satow A, Hata M, Ohta H, Kawamoto H. Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6- (isopropylamino) pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorg Med Chem Lett 2009; 19: 5464–5468.
  • Abdel-Wahab BF, Abdel-Aziz HA, Ahmad EM. Synthesis and antimicrobial evaluation of 1- (benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)- 1,3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem 2009; 44: 2632–2635.
  • Vijaya Raj KK, Narayana B, Ashalatha BV, Suchetha Kumari N, Sarojini BK. Synthesis of some bioactive 2-bromo-5-methoxy-N′-[4-(aryl)-1,3-thiazol-2-yl]benzohydrazide derivatives. Eur J Med Chem 2007; 42: 425–429.
  • Shiradkar MR, Murahari KK, Gangadasu HR, Suresh T, Kalyan CA, Kaur DPR, Burange P, Ghogare J, Mokale V, Raut M. Synthesis of new Sderivatives of clubbed triazolyl thiazole as anti- Mycobacterium tuberculosis agents. Bioorg Med Chem 2007; 15: 3997–4008.
  • Shiradkar M, Kumar GVS, Dasari V, Tatikonda S, Akula KC, Shah R. Clubbed triazoles: a novel approach to antitubercular drugs. Eur J Med Chem 2007; 42: 807–816.
  • Koz’minykh VO, Milyutin AV, Makhmudov RR, Belyaev AO, Koz’minykh EN. Substituted amides and hydrazides of acylpyruvic acids. Part 11. Synthesis and biological activity of 4-aryl-2- hydroxy-4-oxo-2-butenoic acid n-(1,3-thiazol-2-yl)amides. Pharm Chem J 2004; 38: 665–669.
  • Sen F, Dincer M, Cukurovali A, Yilmaz I. N-[4-(3-methyl-3-mesityl-cyclobutyl)-thiazol-2-yl]- succinamic acid: X-ray structure, spectroscopic characterization and quantum chemical computational studies. J Mol Struc 2013; 1046: 1–8.
  • Genc S, Dege N, Yilmaz I, Cukurovali A, Dincer M. 5-Bromo-2-hydroxybenzaldehyde (4- phenyl-1,3-thiazol-2-yl)hydrazone. Erratum. Acta Cryst 2004; E60: o889–o891.
  • Stoe & Cie, X-AREA Version 1.18; Stoe & Cie, Darmstadt, 2002.
  • Sheldrick GM, SHELXS-97; Program for the Solution of Crystal Structures, University of Gottingen, 1997.
  • Farrugia LJ. WinGX suite for smallmolecule single-crystal crystallography. J Appl Crystallogr. 1999; 32: 837–838.
  • Sheldrick GM. SHELXL-97; Program for Crystal Structures Refinement, University of Gottingen, 1997.
  • Spek AL. Structure validation in chemical crystallography. Acta Crystallogr 2009; D65: 148–155. [22] Dennington II R, Keith T, Millam J, Gauss View, Version 4.1.2, Semichem Inc, Shawnee Mission, KS, 2007.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev 1988; B37: 785.
  • Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98: 5648.
  • Alacu IM, Zheng J, Zhao Y, Truhlar DG. Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries. J Chem Theory Comput 2010; 6: 2872-2887.
  • Scott AP, Random L.Harmonic Vibrational Frequencies:  An Evaluation of Hartree−Fock, Mİller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J Phys Chem 1996; 100: 16502-16513.
  • Ditchfield R. Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility. J Chem Phys 1972; 56: 5688.
  • Wolinski K, Hinton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 1990; 112: 8251-8260.
  • Dincer M, Özdemir N, Cukurovali A, Yilmaz I, Buyukgungor O. "1-(3-Mesityl-3- methylcyclobutyl)-2-(pyrrolidin-1-yl)ethan-1-one. Acta Cryst 2004; E60: o1523-o1524.
  • Sen F, Dincer M, Cukurovali A, Yilmaz I. (Z)-1-(3-Mesityl-3-methylcyclobu-tyl)-2-(morpholin- 4-yl) ethanone oxime. Acta Cryst 2011; E67: o958-o959.
  • Ozdemir N, Dincer M, Yilmaz I, Cukurovali A. 1-Methyl-1-phenyl-3-(phthalimidoacetyl) cyclobutane. Acta Cryst 2004; E60: o14-o16.
  • Allen FH. The geometry of small rings VI: Geometrey and bonding in cyclobutane and cyclobutene. Acta Cryst 1984; B40: 64–72.
  • Xu X.-X, You X.-Z, Sun Z.-F, Wang X, Liu H.-X. 2.2’-Azinodimethyldiphenol, C14H12N2O2. Acta Cryst 1994; C50: 1169–1171.
  • Sen F, Dincer M, Cukurovali A, Yilmaz I. 1,1'-Bis(3-methyl-3-phenylcyclobutyl)-2,2'-(azanedi- yl)diethanol. Acta Cryst 2012; E68: o1052.
  • Ozdemir N, Dincer M, Cukurovali A, Buyukgungor O. “Experimental and theoretical investigation of the molecular and electronic structure of 5-(4-aminophenyl)-4-(3- methyl-3- phenylcyclobutyl) thiazol-2-amine. J Mol Model 2009; 15: 1435-1445.
  • Jian FF, Zhao PS, Bai ZS, Zhang L.
  • (Propan-2-Ylidene)Thiosemicarbazide. Struct Chem 2005; 16: 635–639.
  • Quantum Chemical Calculation Studies on 4-Phenyl-1- [38] Bellamy LJ. The Infrared Spectra of Complex Molecules, vol. 2, Chapman and Hall; London, 1980.
  • Sokrates G. Infrared Characteristic Group Frequencies, Wiley Intersciences Publication; New York, 1980.
  • Dollish FR, Fateley WG, Bentley FF. Characteristic Raman Frequencies of Organic Compounds, John Wiley & Sons; New York, 1997.
  • Roeges NPG. A Guide to Complete Interpretation of Infrared Spectra of Organic Structures, Wiley; New York, 1994.
  • Ozdemir N, Dincer M. Cukurovali. An experimental and theoretical approach to the molecular structure of 2-{4-[3-(2,5-dimethylphenyl)-3-methylcyclobutyl]thiazol-2-yl}isoindoline-1,3-dione A. J Mol Model 2010; 16: 291-302.
  • Politzer P, Murray JS.The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 2002; 108: 134-142.
  • Scrocco E, Tomasi J. Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials Adv Quant Chem 1979; 11: 115-193.
  • Luque FJ, Lopez JM, Orozco M. Perspective on "Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor Chem Acc 2000; 103: 343-345.
  • Okulik N, Jubert AH. Theoretical Analysis of the Reactive Sites of Non-steroidal Anti- inflammatory Drugs, Internet Electron. J Mol Des 2005; 4: 17-30.
  • Politzer P, Laurence PR, Jayasuriya K, in: J. McKinney (Ed.), Structure Activity Correlation in Mechanism Studies and Predictive Toxicology, Special Issue of Environ Health Perspect 2005; 102: 61-191.
  • Scrocco E, Tomasi J. The electrostatic molecular potential as a tool for the interpretation of molecular properties. Topics in Current Chemistry; Springer Berlin 1973; 7: 95-170.
  • Politzer P, Truhlar DG. Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press; New York 1981; 1-6.
  • Fleming I. Frontier Orbitals and Organic Chemical Reactions, Wiley; London, 1973.
  • O’ Boyle NM, Tenderholt AL, Langer KM. cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 2008; 29: 839-845.
  • (a) Mulliken RS. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J Chem Phys 1955; 23: 1833,
  • (b) Mulliken RS, Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J Chem Phys 1955; 23: 1841,
  • (c) Mulliken RS, Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J Chem Phys 1955; 23: 2338,
  • (d) Mulliken RS, Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J Chem Phys 1955; 23: 2343.