TUZLUCA (IĞDIR-TÜRKİYE) ÇEVRESİNDE YÜZEYLENEN MİYOSEN YAŞLI KAYAÇLARIN MİNERALOJİK VE JEOKİMYASAL ÖZELLİKLERİ

Anahtar Kelimeler:

Tuzluca, XRD, XRF, FE-SEM/EDS, Köken

MINERALOGICAL AND GEOCHEMICAL PROPERTIES OF THE MIOCENE ROCKS OUTCROPPING AROUND TUZLUCA (IĞDIR-TÜRKİYE)

In this study, Miocene lithostratigraphic units (Turabi, Çincavat and Tuzluca formations) outcropping in the Neogene Kağızman-Tuzluca Basin in the west of Iğdır province were studied. The units are represented by evaporatic, carbonate and clayey rocks. The study aims to determine the mineralogical and geochemical properties of these rocks and to interpret the paleoenvironmental conditions. XRD (X-ray diffraction) whole rock and clay fraction analyzes, OM (Optical Microscope) studies, element determination with XRF (X-ray fluorescence) and, FE-SEM / EDS (Field emission scanning electron microscopy-energy dispersive X-ray spectrometry) studies of rock samples taken along the sections measured in the field were carried out for this purpose. Quartz, feldspar, mica, calcite, gypsum and halite minerals were determined in whole rock compositions of the samples. Smectite, illite, chlorite and paligorskite minerals were found in the clay fractions. It has been determined that feldspars altered to smectite by SEM and EDS studies. Optical microscopy and paleoenvironment studies indicate that the origins of gypsum, halite and palygorskite minerals are authigenic. It was also determined that calcite was authigenic and detritic, while chlorite, illite, quartz, feldspar and mica were detrital. The predominance of smectite, as well as the presence of chlorite, illite and palygorskite indicate that the basin developed under alkaline conditions, mostly hot and humid, and occasionally arid and cold conditions. In geochemical analyzes, the positive correlation of SiO2 with other major oxides (excluding CaO, MgO and SO3) is the input of clay and clastic materials, while the negative correlation of SiO2 with SO3 and CaO is associated with the decrease in the rate of CaSO4 sediments as a result of shallowing of the basin due to evaporation of water.

___

  • [1] Şengör AMC. Cross faults and differential stretching of hanging walls in regions of low angle normal faulting: examples from western Turkey. Geolsoc 1987; 28:575–589.
  • [2] Purvis M, Robertson AHF. Sedimentation of the Neogene–Recent Alaşehir (Gediz) Continental Graben System used to Test Alternative Tectonic Models for Western (Aegean) Turkey. Sed Geol 2005; 173:373–408.
  • [3] Purvis M, Robertson AHF. Miocene sedimentary evolution of the NE–SW-trending Selendi and Gördes Basins, W Turkey: Implications for Extensional Process. Sed Geol 2005; 174:31–62.
  • [4] Çiftçi NB, Bozkurt E. Structural evolution of the Gediz Graben, SW Turkey: Temporal and Spatial Variation of the Graben Basin. Basin Res 2010; 22:846–873.
  • [5] Ayyıldız T, Varol B, Karakaş Z, Sözeri K. Basic Geochemical Characteristics of Lacustrine Rocks in the Neogene Kağızman–Tuzluca Basin, Northeastern Turkey, J. Pet. Expl. Pro. Tec. 2019: 9; 141-157.
  • [6] Yılmaz O, Şener M. Investigation of well samples taken from Erzurum-Pasinler, Erzincan-Çayırlı, Kars-Tuzluca and Malatya-Haeılar by X-ray diffraction. Türk Jeo Kurul Bült 1984; 27:31–40.
  • [7] Yılmaz O. Geology, mineralogy and petrography of the Kağızman (Kars – Tuzluca (Iğdır) tuz yataklarının Kağızman (Kars)–Tuzluca (Iğdır) salt beds. MSc. Dokuz Eylül University, İzmir, Türkiye, 2007.
  • [8] Karakaş Z, Varol B, Ayyıldız T, Sözeri K. Occurrence of Clay Minerals Associated with Caliche in the Neogene Çincavat Formation (Tuzluca Basin, NW of Iğdır). In: Euroclay 2011 European Clay Conference; 26 June- 01 July 2011: Antalya, Türkiye. 252.
  • [9] Güngör-Yeşilova P, Yeşilova Ç. Depositional Basin, Diagenetic Conditions and Source of Miocene Evaporites in the Tuzluca Basin in Northeastern Anatolia, Turkey: Geochemical Evidence. Geo. Int. 2021; 59: 1293–1310.
  • [10] Şaroğlu F, Yılmaz Y. Geological Evolution and Basin Models During the Neotectonic Episode in Eastern Anatolia. Bul Min Res Expl Inst. 1986; 107: 61–83.
  • [11] Varol B, Ayyıldız T, Karakaş Z, Sözeri K. Fault-İnduced “Pull-Apart” Terrestrial Depositional Model in the Igdir-Kagizman Neogene Basin, Eastern Turkey. 27th IAS Meeting Sediment; 20-23 September 2009; Alghero, Italy. pp 35–39.
  • [12] Ayyıldız T, Varol B, Karakaş Z, Sözeri K. Miocene Evaporites in the Intermountain Tuzluca-Iğdır Neogene Basin, Eastern Turkey. EGU General Assembly; 22-27 April 2012; Vienna, Austria.
  • [13] Varol B, Şen Ş, Ayyıldız T, Sözeri K, Karakaş Z, Métais G. Sedimentology and Stratigraphy of Cenozoic Deposits in the Kağizman-Tuzluca Basin, Northeastern Turkey. Inter. Jour. of Scien. 2016; 105:107–137.
  • [14] Koçyiğit A, Yılmaz A, Adamia S, Kuloshvili S. Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geo. Acta 2001; 14:177–195.
  • [15] Şen Ş, Antoine PO, Varol B, Ayyıldız T, Sözeri K. Giant rhinoceros Paraceratherium and other vertebrates from Oligocene and middle Miocene deposits of the Kağizman–Tuzluca Basin, Eastern Turkey. Naturwissenschaften 2011; 98: 407–423.
  • [16] Sancay RH. Palynostratigraphic and palynofacies investigation of the Oligocene-Miocene units in the Kars-Erzurum-Muş Subbasins (Eastern Anatolia). MSc, Middle East Technical University, Ankara, Turkey, 2012.
  • [17] Hanawalt JD, Rinn HW, Frevel LK. Chemical Analysis by X-Ray Diffraction. Anl Chem 1938; 10:475-512.
  • [18] Brindley GW, Brown G. Crystal Structures of Clay Minerals and their X-ray Identification. London, LD, England: Min Soc, 1980.
  • [19] Wilson MJ. A Handbook of Determinative Methods in Clay Mineralogy. London, LD, England: Blackie, 1987.
  • [20] Moore DM, Reynolds RC. X-ray Diffraction and the Identification and Analysis of Clay Minerals. 2nd ed. Illinois, USA: Oxford Su Press, 1997.
  • [21] Welton, JE. SEM Petrology Atlas. Tulsa, Oklahama, USA: AAPG Press, 1984.
  • [22] Whitney LD, Evans WB. Abbreviations for names of rock-forming minerals. USA Min 2010; 95: 185-187.
  • [23] Güngör-Yeşilova P, Tekin E. Geochemical and Geostatistical Investigation of Upper Miocene Evaporites in the Polatlı-Sivrihisar Neogene Basin (Demirci Village, NE Sivrihisar; Central Anatolia, Turkey). Tür Jeo Bül 2007; 50: 71-94.
  • [24] Perkins BR, Piper DZ. Life cycle of the Phosphoria Formation: from Deposition to the Post-Mining Environment. Amsterdam, Holland: Elsevier Sci, 2004.
  • [25] Smykatz-Kloss W, Roy PD. Evaporite Mineralogy and Major Element Geochemistry as Tools for Palaeoclimatic Investigations in Arid Regions: A Synthesis. UNAM 2010; 62: 379-390.
  • [26] Crook KAW. Lithogenesis and Geotectonics: the Significance of Compositional Variations in Flysch Arenites (graywackes), in Dott, R.H., Shaver, R.H. (eds.), Modern and Ancient Geosynclinal Sedimentation. SEPM 1974; 19: 304–310.
  • [27] Emelyanov EM, Shimhus KM. Geochemistry and Sedimentology of the Mediterranean Sea. Paris, France: Springer, 1986.
  • [28] Tekin E, Varol B. Petrographic investigation of celestine deposits in the Sivas Basin (Central Anatolia). A. Suat Erk Jeo. Sempozyumu 1993; 319-327.
  • [29] Tekin E, Ayan Z, Varol B. Fluid inclusion studies and microtextural characteristics of Sivas-Ulaş celestite deposits (Tertiary) Türk Jeol Bült 1994; 37: 61-76.
  • [30] Pye K, Krinsley DH. Diagenetic Carbonate and Evaporite Minerals in Rotliegend Aeolian Sandstones of the Southern North Sea: Their Nature and Relationship to Secondary Porosity. Clay Min 1986; 21:443–457.
  • [31] Haug GH, Gunther D, Peterson LC, Sigman DM, Highen KA, Aeschlimann B. Climate and the Collapse of Maya Civilization. AAAS 2003; 299: 1731–1735.
  • [32] Guo P, Chiyang L, Peng W, Ke W, Haili Y, Bei Li. Geochemical behavior of rare elements in Paleogene Saline Lake Sediments of the Qaidam Basin, NE Tibetan Plateau. Carb Evap 2019; 34: 359-372.
  • [33] Reinhardt N, Proenza JA, Villanova-de-Benavent C, Aiglsperger T, Bover-Arnal T, Torro L, Salas R, Dziggel A. Geochemistry and Mineralogy of Rare Earth Elements (ree) in Bauxitic Ores of the Catalan Coastal Range, NE Spain, MDPI 2018; 8:562.
  • [34] Abdioğlu E, Arslan M, Helvacı C, Gündoğan İ, Temizel İ, Aydınçakır D. Geochemistry of Miocene evaporites from the Aşkale (Erzurum, Eastern Turkey) area: Constraints for Paleo-Environment. Bull Miner Res and Explor 2021; 165: 1-45.
  • [35] Krauskopf KB, Bird DK. Introduction to Geochemistry. New York, NY, USA: McGraw-Hill, 1994.
  • [36] Fisher RS. Clay Minerals in Evaporite Host Rock, Palo Duro Basin, Texas Panhandle. SEPM 1988; 58: 836-844.
  • [37] Fehrenbacher JB, Wilding LP, Odell RT, Melsted SW. Characteristics of solonetzic soils in Illinois. SSSA 1963; 27: 421– 431.
  • [38] Mahjoory RA. The Nature and Genesis of Some Salt-Affected Soils in Iran Soil. SSSA 1979; 43: 1019–1024.
  • [39] Kohut CK, Dudas M.J. Evaporite Mineralogy and Trace-Element Content of Salt Affected Soil in Alberta. Can. J. Soil. Sci. 1995; 73 :399–409.
  • [40] Furquim SAC, Graham RC, Barbiero C, Queiroz Neto, JP, Vidal-Torrado P. Soil Mineral Genesis and Distribution in a Saline Lake Landscape of the Pantanal Wetland, Brazil. Geoderma 2010; 154: 518–528.
  • [41] Chamley H. Clay Sedimentology. Verlag, Berlin, German: Springer, 1989.
  • [42] Nesbitt HW, Young GM. Formation and Diagenesis of Weathering Profiles. Jour Geol 1989; 97: 129–147.
  • [43] Nesbitt, HW, Fedo CM., Young G.M. Quartz and Feldspar Stability, Steady and Nonsteady-State Weathering, and Petrogenesis of Siliciclastic Sands and Muds. Jour Geol 1997; 105: 173–191.
  • [44] Fürsich FT, Singh IB, Joachimski M, Krumm S, Schlirf M, Schlirf S. Palaeoclimate Reconstructions of the Middle Jurassic of Kachchh (western India): an İntegrated Approach Based on Palaeoecological, Oxygen Isotopic, and Clay Mineralogical Data. Palaeo 2005; 217: 289–309.
  • [45] Kovacs J, Raucsık B, Varga A, Ujvarı G, Varga G, Ottner F. Clay mineralogy of red clay deposits from the central Carpathian Basin (Hungary): implications for Plio-Pleistocene chemical weathering and palaeoclimate. TÜBİTAK 2013; 22: 414-426.
  • [46] Chamley H, Masse JP. Sur la Signification Des Min´eraux Argileux Dans Les S´ediments Barremiens et B´edouliens de Provence. In 9th Sedimentology Cong; 1975; 1:25-29
  • [47] Yang R, Fan A, Van-Loon AJ, Han Z, Zavala C. The Influence of Hyperpycnal flows on the Salinity of Deep-Marine Environments, and Implications for the Interpretation of Marine Facies. Mar. Petrol. Geol. 2018; 98:1-11
  • [48] Yun J, Guoqiang S, Shile P, Yetong W, Shuncong Z. Sedimentary Environment Analysis of Eocene in Pingtai Area of Qaidam Basin, China. Res. Squ. 2021.
  • [49] Dera G, Pellenard P, Neige P, Deconinck JF, Pucéat E, Dommergues JL. Discussion of Sedimentary Environment and Its Geological Enlightenment of Shanxi Formation in Ordos Basin. Act. Petrol. Sin. 2011; 27:2213–2229.
  • [50] Karasu E. Determination of mineralogical and geochemical characteristics of Miocene aged rocks outcropped around Tuzluca (Iğdır/Türkiye). MSc, Van Yüzüncü Yıl University, Van, Türkiye, 2022.