KAOLIN FORMATION IN YATAĞAN (MUĞLA) LIGNITE DEPOSIT

The 30-km-long and 10-km-wide, coal-bearing Yatağan Basin is located in SW Anatolia, close to the eastern coast of the Aegean Sea, Türkiye. The basement consists of Menderes Massif metamorphics in the NW part of this intermontane basin, c. 80-km2-large area (Turgut lignite deposit). The Neogene and Quaternary sedimentary filling comprises fluvioterrestrial, limnic and telmatic sediments which contain a mineable coal seam up to 15 m thick, unconformably overlain the basement. Two fresh and six weathered samples were picked up from the Menderes Massif gneiss outcrops of the catchment area. Eight sedimentary rocks, inorganics over and underlying the coal seam, were obtained from four borehole cores. All samples were examined under the optical microscope; XRD, SEM-EDX and ICP-MS analyses were later performed. This study aims to examine the mineralogical content and geochemical processes of the sedimentary rocks from different formations, namely Sekköy and Turgut Formations, which are over- and underlying the lignite horizon, to assess the clay mineral formations and transformations. Gneiss samples contain mainly quartz, plagioclase, K-feldspar, muscovite and biotite with a lesser amount of tourmaline, chlorite, garnet, apatite, zoisite, zircon and Fe-oxides. The -2 µm fraction consists mainly of illite, with fewer smectite and kaolinite. Sericitizitation of feldspar is the main product in gneisses. Coal over-and underlying sedimentary rock samples contain mainly quartz, plagioclase, K-feldspar, muscovite, and biotite with less pyrite and iron oxides. The -2 µm fraction of the sedimentary rock samples consists of variable clay mineral contents. Kaolin content is higher in acidic conditions with an opposite correlation to smectite occurrences. The geochemistry of Menderes Massif gneisses shows that it gave felsic material to the catchment area, whereas the geochemistry of sedimentary rocks is not coherent in all cases. Geochemical parameters like CIA and PIA proved that weathering processes of the source materials prevailed during the generation of these sedimentary units.

KAOLIN FORMATION IN YATAĞAN (MUĞLA) LIGNITE DEPOSIT

The 30-km-long and 10-km-wide, coal-bearing Yatağan Basin is located in SW Anatolia, close to the eastern coast of the Aegean Sea, Türkiye. The basement consists of Menderes Massif metamorphics in the NW part of this intermontane basin, c. 80-km2-large area (Turgut lignite deposit). The Neogene and Quaternary sedimentary filling comprises fluvioterrestrial, limnic and telmatic sediments which contain a mineable coal seam up to 15 m thick, unconformably overlain the basement. Two fresh and six weathered samples were picked up from the Menderes Massif gneiss outcrops of the catchment area. Eight sedimentary rocks, inorganics over and underlying the coal seam, were obtained from four borehole cores. All samples were examined under the optical microscope; XRD, SEM-EDX and ICP-MS analyses were later performed. This study aims to examine the mineralogical content and geochemical processes of the sedimentary rocks from different formations, namely Sekköy and Turgut Formations, which are over- and underlying the lignite horizon, to assess the clay mineral formations and transformations. Gneiss samples contain mainly quartz, plagioclase, K-feldspar, muscovite and biotite with a lesser amount of tourmaline, chlorite, garnet, apatite, zoisite, zircon and Fe-oxides. The -2 µm fraction consists mainly of illite, with fewer smectite and kaolinite. Sericitizitation of feldspar is the main product in gneisses. Coal over-and underlying sedimentary rock samples contain mainly quartz, plagioclase, K-feldspar, muscovite, and biotite with less pyrite and iron oxides. The -2 µm fraction of the sedimentary rock samples consists of variable clay mineral contents. Kaolin content is higher in acidic conditions with an opposite correlation to smectite occurrences. The geochemistry of Menderes Massif gneisses shows that it gave felsic material to the catchment area, whereas the geochemistry of sedimentary rocks is not coherent in all cases. Geochemical parameters like CIA and PIA proved that weathering processes of the source materials prevailed during the generation of these sedimentary units.

___

  • [1] McKenzie DP. Active tectonics of the Mediterranean region. Geophys J Roy Astr S 1972; 30: 109-185.
  • [2] Dumont JF, Uysal S, Şimşek S, Karamanderesi İH ve Letouzey J. Formation of the grabens in southwestern Anatolia. Bull Min Res Expl Inst Turkey 1979; 92: 7-18.
  • [3] Angelier J, Dumont JF, Karamanderesi İH, Poisson A, Şimşek S, Uysal S. Analysis of fault mechanisms and expansion of southwestern Anatolia since the late Miocene. Tectonophysics 1981; 75: 1-9. [4] Şengör AMC, Görür N, Şaroğlu F. Strike-slip faulting and related basin formation in zone of tectonic escape: Turkey as a case study. In: Biddle K, Christie-Blick N, editors. Strike-slip deformation, basin formation and sedimentation. SEPM 1985; 227-264.
  • [5] Barka AA. The North Anatolian Fault zone. Annales Tectonicae 1992; 6: 164-165.
  • [6] Becker A. An attempt to define a “neotectonic period” for central and northern Europe. Int J Earth Sci 1993; 82-1: 67-83.
  • [7] Cohen HA, Dart CJ, Akyüz HS, Barka AA. Syn-rift sedimentation and structural development of the Gediz and Büyük Menderes graben, western Turkey. J Geol Soc London 1995; 152: 629-638.
  • [8] Yılmaz Y, Genç SC, Gürer OF, Bozcu M, Yılmaz K, Karacık Z, Altunkaynak Ş, Elmas A. When did the western Anatolian grabens begin to develop?. Geol Soc Spec Publ 2000; 173: 353-384.
  • [9] Bozkurt E. Neotectonics of Turkey-a synthesis. Geodin Acta 2001; 14: 3-30.
  • [10] Bozkurt E. Origin of NE-trending basins in western Turkey. Geodin Acta 2003; 16: 61-81.
  • [11] Collins AS, Robertson AHF. Kinematic evidence for late Mesozoic-Miocene emplacement of the Lycian Allochthon over the Western Anatolian belt, SW Turkey. Geol J 2003; 38: 107-138.
  • [12] Bozkurt E, Sözbilir H. Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey. Geol Mag 2004; 141: 63-79.
  • [13] Çiftçi NB, Bozkurt E. Folding of the Gediz Graben fill, SW Turkey: extensional and/or contractional origin?. Geod Acta 2008; 21: 145-167.
  • [14] Sözbilir H, Sarı B, Uzel B, Sümer Ö, Akkiraz S. Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: The Kocaçay Basin, western Anatolia, Turkey. Basin Res 2011; 23: 423-448.
  • [15] Atalay Z. Muğla-Yatağan ve yakın dolayı karasal Neojen’inin stratigrafi araştırması. Bull Geol Soc Turkey 1980; 23: 93-99.
  • [16] Hakyemez HY, Örçen S. Muğla Denizli arasındaki (GB Anadolu) Senozoyik yaşlı çökel kayaların sedimentolojik ve biyostratigrafik incelenmesi. Min Res Expl Inst Ankara 1982; Report 7311.
  • [17] Hakyemez HY. Kale-Kurbalık (Güneybatı Denizli) bölgesindeki Senozoyik yaşlı çökel kayaların jeolojisi ve stratigrafisi. Bull Min Res Expl Inst Turkey 1989; 109, 9-21.
  • [18] Göktaş F. Muğla çevresindeki (GB Anadolu) Neojen tortullaşmasının stratigrafisi, sedimentolojisi ve bölgesel korelasyonu. Min Res Expl Inst Ankara 1998; Report 10225.
  • [19] Akgün F, Sözbilir H. A palynostratigraphic approach to the SW Anatolian molasse basin: Kale-Tavas molasse and Denizli Molasse. Geodin Acta 2001; 14: 71-93.
  • [20] Becker-Platen JD, Bering A. Yatağan (Muğla) sahasının linyit etüdü. Min Res Expl Inst Ankara 1966; Report 5995.
  • [21] Gökmen V. Muğla Yatağan-Eskihisar bölgesi linyit yatakları jeolojisi, sondaj ve sonuçları. PhD, İstanbul University, İstanbul, Türkiye, 1980.
  • [22] Ünal D. Muğla-Yatağan-Turgut Linyit Sektörü Jeoloji Raporu. Min Res Expl Inst İzmir 1986.
  • [23] Ünal D. Muğla Yatagan- Turgut sahalarındaki linyitlerin rezervi ve kalitesinin hesabı. GELİ 1991.
  • [24] Graciansky P. Menderse Masifi’nin güney kıyısı boyunca (Türkiye’nin GB’sı) görülen metamorfizma hakkında açıklamalar. Bull Min Res Expl Inst Turkey 1965; 64: 8-22.
  • [25] Dora OÖ, Kun N ve Candan O. Metavolkanics (leptites) in the Menderes Massif: a possible paleoarc volcanism. METU J Pure Appl Sci 1988; 21 1-2: 413-445.
  • [26] Dora OÖ, Candan O, Kaya O, Koralay E, Dürr S. Revision of the so-called "leptitegneisses" in the Menderes Massif: A supracrustal metasedimentary origin. Int J Earth Sci 2001; 89-4: 836-851.
  • [27] Özer S, Sözbilir H, Özkar I, Toker V, Sarı B. Stratigraphy of Upper Cretaceous-Palaeogene sequences in the southern and eastern Menderes Massif (Western Turkey). Int J Earth Sci 2001; 89-4: 852-866.
  • [28] Candan O, Dora ÖO, Oberhänslı R, Koralay E, Çetinkaplan M, Akal C, Satır M, Chen F, Kaya O. Menderes Masifi’nin Pan-Afrikan temelinin stratigrafisi ve Gondvana’nın Geç Neoproterozoyik/Kambriyen evrimi ile ilişkisi. Bull Min Res Expl Inst Turkey 2011; 142: 25-68.
  • [29] Candan O, Oberhänsli R, Dora ÖO, Çetinkaplan M, Koralay E, Rimmelé G, Chen F, Akal C. Menderes Masifi’nin Pan-Afrikan temel ve Paleozoyik-Erken Tersiyer örtü serilerinin polimetamorfik evrimi. Bull Min Res Expl Inst Turkey 2011; 142: 123-165.
  • [30] Koralay EO, Candan O, Akal C, Dora OÖ, Chen F, Satır M, Oberhänslı R. The geology and geochronology of the Pan-African and Triassic metagranitoids in the Menderes Massif, Western Anatolia, Turkey. Bull Min Res Expl Inst Turkey 2011; 142: 69-119.
  • [31] Nebert K. Denizli-Acıgöl merkezinin jeolojisi, 1/100.000 ölçekli Denizli 105/1, 105/2 ve Isparta 106/1 paftalarının sahası içinde yapılan jeolojik haritaları hakkında rapor. Min Res Expl Inst Ankara 1956; Report 2509.
  • [32] Abdüsselamoğlu S. Muğla-Yatağan çevresinde görülen formasyonların korelasyonları hakkında rapor. Min Res Expl Inst Ankara 1965; Report 3497.
  • [33] Başarır E. Bafa gölünün doğusunda kalan Menderse Masifi güney kanadının jeolojisi ve petrografisi. Ege Uni Sci Fac 1970; 102: 1-44.
  • [34] Becker-Platen JD. Lithostratigraphische Untersushungen im Kanozoikum Südwest-Anatoliens (Türkei) (Kanozoikumund Braunkohlen der Türkei, 2). Beih Geol Jb 1970; 97: 144.
  • [35] Gökten E, Havzaoğlu T, Şan Ö. Tertiary evolution of the central Menderes Massif based on structural evolution of metamorphics and sedimentary rocks between Salihli and Kiraz (western Turkey). Int J Earth Sci 2001; 89: 745-756.
  • [36] NASA Earth Data. ESDS Program 2022: https://urs.earthdata.nasa.gov/
  • [37] 30-Meter SRTM Tile Downloader 2022: https://dwtkns.com/strm30m/
  • [38] Brown G, Brindley GW. X-Ray diffraction procedures for clay mineral identification. In: Brindley GW, Brown G, editors. Crystal Structures of Clay Minerals and their X-Ray Identification. London, Great Britain: Spottiswoode Ballantyne Ltd, 1980. pp. 305-359.
  • [39] DIN 66115 (Deutsche Institute fürNormunge. V.). Partikelgrößenanalyse; Sedimentationsanalyse im Schwerefeld; Pipette-Verfahren, Germany, 1983-02.
  • [40] Whitney DL, Evans BW. Abbreviations for names of rock-forming minerals. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications in weathering conditions and provenance. Am Min 2010; 95: 185-187.
  • [41] Warr LN. Recommended abbreviations for the names of clay minerals and associated phases. Clay Miner 2020; 55: 261-264.
  • [42] Bozkurt E, Winchester AJ, Mittwede S, Ottley C. Geochemistry and tectonic implications of leucogranites and tourmalines of the southern Menderes Massif, southwest Turkey. Geodin Acta 2006;19/5: 363–390.
  • [43] Candan O, Koralay OE, Akal C, Kaya O, Oberhänslı R, Dora OÖ, Konak N, Chen F. Supra-Pan_African unconformity between core and cover series of the Menderes Massif/Turkey and its geological implications. Precambrian Res 2011; 184:1-23.
  • [44] Yılmaz Ö, Güngör T, Kayseri-Özer MS, Akgün F, Mayda S, Kaya T, Nazik A, Büyükmeriç Y. Stratigraphy of the Mio-Pleistocene sequence in Göktepe region based on the fossil record (Muğla, SW Turkey). Turk J Earth Sci 2020; 29: 501-520.
  • [45] Stoch L, Sikora W. Transformations of micas in the process of kaolinitization of granites and gneisses. Clay Clay Miner 1976; 24: 156-162.
  • [46] Hemley JJ, Jones WR. Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Economic Geol 1964; 59: 538-569.
  • [47] Macaulay CI, Fallick AE, Haszeldine RS. Textural and isotopic variations in diagenetic kaolinite from the Magnus oilfield sandstones. Clay Minerals 1993; 28: 625-639.
  • [48] Kadir S, Karakaş Z. Mineralogy, chemistry and origin of halloysite, kaolinite and smectite from Miocene ignimbirites, Konya, Turkey. N Jb Miner Abh 2002; 177-2: 113-132.
  • [49] Middlemost EAK. Naming materials in magma/igneous rock system. Earth Sci Rev 1994; 37: 215-224.
  • [50] Irvine TN, Baragar WRA. A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 1971; 8: 523–548.
  • [51] Miyashiro A. Volcanic rock series in island arcs and active continental margins. Am J Sci 1974; 274: 321–355.
  • [52] Shand SJ. Eruptive Rocks. Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite. New York: John Wiley & Sons 1943.
  • [53] Roser BP, Cooper RA, Nathan S, Tulloch AJ. Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zeland. N Z J Geol Geophys 1996; 39: 1-16.
  • [54] Boynton WV. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson P, editor. Rare Earth Element Geochemistry. Elsevier 1984. pp. 63-114.
  • [55] Gromet LP, Dymek RF, Haskin LA, Korotev RL. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim Cosmochim Acta 1984; 48: 2469-2482.
  • [56] Taylor SR, Mclennan SM. The Significance of the rare earths in geochemisrtry and cosmochemistry. In: Gschneidner KA, Eyrin L, editors. Handbook on the Physics and Chemistry of Rare Earths. Elsevier Science Publishers 1988; 11. pp. 485-578.
  • [57] Haskin MA, Haskin LA. Rare earths in European Shales: a redetermination. Science 1966; 154: 507-509.
  • [58] Taylor SR, Mclennan SM. The comparison and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Phil Trans R Soc Lond A 1981; 301, 381-399.
  • [59] Herron MM. Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Petrol 1988; 58: 820-829.
  • [60] Floyd PA, Winchester JA, Park RG. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Res 1989; 45, 203-214.
  • [61] Cox R, Lowe DR, Cullers RL. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim et Cosmochim Acta 1995; 59-14: 2919-2940.
  • [62] Hayashi KI, Fujisawa H, Holland HD, Ohmoto H. Geochemistry of ~1.9 Ga sedimentary rocks from norteastern Labrador, Canada. Geochim Cosmochim Acta 1997; 61: 4115-4137.
  • [63] Roser BP, Korsch. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 1988; 67: 119-139.
  • [64] Cullers RL, Berendsen P. The provenance and chemical variation of sandstones associated with the Mid-Continent Rift system, USA. Eur J Mineral 1998; 10: 987-1002.
  • [65] Büçkün Z, Çolak M. Petrological, mineralogical and geochemical proxies to the organic matter dispersed in the sedimentary rocks in Turgut area, Yatağan Basin, SW Türkiye. Bull Geol Soc Greece Sp Publ (BGSG) 2023; 12: 48.
  • [66] Nesbitt HW, Young GM. Formation and diagenesis of weathering profiles. J Geol 1989; 97: 129-147.
  • [67] McLennan SM, Hemming S, McDaniel DK, Hanson GN. Geochemical approaches to sedimentation, provenance and tectonics. Geol Soc Am Spec Pub 1993; 284: 21-40.
  • [68] Fedo CM, Nesbitt HW, Young GM. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications in weathering conditions and provenance. Geology 1995; 23: 921-924.
  • [69] Rimmelé G, Parra T, Goffé B, Oberhänslı R, Candan O. Exhumation paths of high pressure-low-temperature metamorphic rocks from the Lycian Nappes and the Menderes Massif (SW Turkey): a Multi-equilibrium approach. J Petrol 2005; 46: 641-669.