NİKEL GİDERİMİ İŞLEMLERİNDE KÖMÜR UÇUCU KÜLÜNÜN DÜŞÜK MALİYETLİ ADSORBAN MALZEMESİ OLARAK KULLANIMI

Bu çalışmada, kömür uçucu külü sulu çözeltilerden nikel(II) iyonlarının gideriminde düşük maliyetli adsorban olarak değerlendirilmiştir. pH, adsorban miktarı, temas süresi ve başlangıç ağır metal derişimi gibi adsorpsiyon işlemini etkileyen deneysel parametrelerin optimizasyonu gerçekleştirilmiştir. Elde edilen deneysel veriler Langmuir, Freundlich ve Dubinin-Radushkevich (D-R) izotermleri kullanılarak modellenmiştir. Langmuir modelinin adsorpsiyon verilerine daha iyi uyduğu belirlenmiştir. Uçucu külün en yüksek tek tabaka adsorpsiyon kapasitesi 294,00 mg/g olarak bulunmuştur. Yapılan çalışma, ticari adsorbanlarla karşılaştırıldığında uçucu külün sulu çözeltilerden ağır metallerin gideriminde etkin ve ekonomik bir adsorban malzemesi olabileceğini göstermiştir

UTILIZATION OF COAL FLY ASH AS LOW-COST ADSORBENT MATERIAL FOR NICKEL REMOVAL APPLICATIONS

In this study, coal fly ash (CFA) was evaluated as a low cost adsorbent for the removal of nickel(II) ions from aqueous solution. Experimental parameters affecting the adsorption process such as pH, adsorbent dosage, contact time and initial metal ion concentration were optimized. The experimental data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Langmuir model resulted in the best fit of the adsorption data. The maximum monolayer adsorption capacity of CFA was found to be 294.00 mg/g. The study showed that, CFA seems to be an effective and low cost adsorbent material when compared with commercial adsorbents for the removal of heavy metals from aqueous solutions

___

  • (Bayat, 2002) (Bayat, 2002) (Banerjee et al., 2003) (Banerjee et al., 2003) (Banerjee et al., 2003) (Gupta et al., 2003) (Jha et al., 2008) (Krishnan et al., 2011) (Hasar, 2003) (Kadirvelu et al., 2001) (R.-Estupinan et al., 2013) This Study CONCLUSION
  • Adsorption Mechanisms of Removing Heavy Metals and Dyes from Aqueous Solution using Date Pits Solid Adsorbent. Journal of Hazardous Materials 176, 510- 5
  • Alinnor, I.J. (2007). Adsorption of Heavy Metal
  • Ions from Aqueous Solution By Fly Ash. Fuel 86, 853-857. Amuda, O.S., Giwa, A.A., Bello I.A. (2007).
  • Removal of Heavy Metal from Industrial Wastewater using Modified Activated Coconut Shell Carbon. Biochemical Engineering Journal 36, 174-181. Banerjee , S.S., Jayaram, R.V., Joshi M.V. (2003). Removal of Nickel(II) and Zinc(II) from Wastewater using Fly Ash and Impregnated Fly Ash, Separation Science and Technology 38, 1015-1032.
  • Bayat, B. (2002). Comparative Study of
  • Adsorption Properties of Turkish Fly Ashes I. The Case of nickel(II), Copper(II) and Zinc(II). Journal of Hazardous Materials 95, 251-273. Benhammou, A., Yaacoubi, A., Nibou, L., Tanouti, B. (2005) Adsorption of Metal
  • Ions onto Moroccan Stevensite: Kinetic and Isotherm Studies. Journal of Colloid and Interface Science 282, 320-326. Bouzid, J., Elouear. Z., Ksibi, M., Feki, M., Montiel, A. (2008).A Study on Removal
  • Characteristics of Copper from Aqueous Solution By Sewage Sludge and Pomace Ashes. Journal of Hazardous Materials 152, 838-845. Bozic, D., Stankovic, V., Gorgievski, M., Bogdanovic, G., Kovacevic, R. (2009).
  • Adsorption of Heavy Metal Ions By Sawdust of Deciduous Trees. Journal of Hazardous Materials 171, 684-692. Bulut, Y., Tez, Z. (2007). Removal of Heavy
  • Metals from Aqueous Solution By Sawdust Environmentally Science 19, 160-166. Journal of Cho, H., Oh, D., Kim, K. (2005). A study on
  • Removal Characteristics of Heavy Metals from Aqueous Solution By Fly Ash. Journal of Hazardous Materials 127, 187- 1
  • Dubinin, M.M., Radushkevich, L.V. (1947).
  • Equation of The Characteristic Curve of Activated Charcoal. Proceding Academy Sciences USSR Phys. Chem. Sect. 55, 331. El-Guendi, M. (1991). Homogeneous Surface
  • Diffusion Model of Basic Dyestuffs onto Natural Adsorption Science and Technology 8, 217–225. Batch Adsorbers. El-Naas, M. H., Al-Zuhair, S., Alhaija, M.A. (2010).
  • Petroleum Refinery Wastewater Through Adsorption on Date-pit Activated Carbon Chemical Engineering Journal 162, 997- 100 Phenol from Freundlich, H.M.F. (1906). Over The Adsorption in Solution. The Journal of Physical Chemistry 57, 385-471.
  • Gupta, V.K., Jain, C.K., Ali, I., Sharma, M., Saini, V.K. (2003). Removal of Cadmium and Nickel from Wastewater using
  • Bagasse Fly Ash- A Sugar Industry Waste. Water Research 37, 4038-4044.
  • Hasar, H. (2003). Adsorption of Nickel(II) from
  • Aqueous Solution onto Activated Carbon Prepared from Almond Husk. Journal of Hazardous Materials 97, 49-57. Hsu, T.C., Yu, C.C., Yeh, C.M. (2008).
  • Adsorption of Cu2+ from Water using Raw and Modified Coal Fly Ashes. Fuel 87, 1355-1359.
  • Hsu, T.C. (2008). Adsorption of an Acid Dye onto Coal Fly Ash. Fuel 87, 3040-3045.
  • Jha, V.K., Matsuda, M., Miyake, M. (2008).
  • Sorption Properties of The Activated Carbon-zeolite Composite Prepared from Coal Fly Ahs for Ni2+, Cu2+, Cd2+ and Pb2+. Journal of Hazardous Materials 160, 148- 1
  • Jia, Q. and Lua, A.C. (2008). Effects of Pyrolysis on Conditions Characteristics The of
  • Activated Carbons used in Aqueous Phase Phenol Adsorption. Journal of Analytical and Applied Pyrolysis 83, 175-179. Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C. (2001). Adsorption of Nickel(II) from
  • Aqueous Solution onto Activated Carbon Prepared from Coirpith. Separation and Purification Technology 24, 497–505. Krishnan, K.A., Sreejalekshmi, K.G., Baiju, R.S. (2011). Biomass
  • Obtained from Sugarcane Bagasse Pith. Bioresource Technology 102, 10239- 102 Adsorption onto Activated Carbon
  • Kundu, S., Gupta A.K., (2006). Investigations on
  • The Adsorption Efficiency of Iron Oxide Coated Cement (IOCC) Towards As(V)- Kinetics, Thermodynamic Studies. Colloids and Surfaces Engineering Aspects 273, 121–128. and A: Physicochemical and Science 286, 351-357. Applied Surface Sarı, A., Tuzen, M., Uluozlu, O.D., Soylak, M. (2007). Biosorption of Pb(II) and Ni(II) from Aqueous Solution By Lichen
  • (Cladonia furcata) Biomass. Biochemical Engineering Journal 37, 151-158. Sharma, Y.C, Uma, Singh S.N., Paras, Goded F. (2007). Fly Ash for The Removal of
  • Mn(II) from Aqueous Solutions and Wastewaters. Journal 132, 319-323. Engineering Shin, K.Y., Hong, J.Y., Jang, J. (2011). Heavy
  • Metal Ion Adsorption Behavior in Nitrogen-doped Nanoparticles: Isotherms and Kinetic Study. Journal of Hazardous Materials 190, 36-44. Carbon Srivastava, V.C., Deo, Mall I., Mishra, I.M. (2006). Characterization of Mesoporous
  • Rice Husk Ash (RHA) and Adsorption Kinetics of Metal Ions from Aqueous Solution onto RHA. Journal of Hazardous Materials. 134, 257-267. Tofan, L., Paduraru, C., Bilba, D., Rotariu, M. (2008).Thermal Power Plants Ash as
  • Sorbent for The Removal of Cu(II) and Zn(II) Ions from Wastewaters. Journal of Hazardous Materials.156, 1-8. Wang, S., Wu, H. (2006). Environmental-benign
  • Utilization of Fly Ash as Low-cost Adsorbents. Materials B136, 482–501. of Hazardous Wu, D., Sui, Y., He, S., Wang, X., Li, C., Kong, H. (2008).
  • Chromium from Aqueous Solution By Zeolite Synthesized from Coal Fly Ash. Journal of Hazardous Materials 155, 415- 4 of Trivalent Zhang, Z., Zhang, Z., Fernandez, Y., Menendez, J.A., Niu, H., Peng, J., Zhang, L., Guo, S. (2010). Adsorption Isotherms and Kinetics of Methylene Blue on a Low-cost
  • Adsorbent Recovered from a Spent Catalyst of Vinyl Acetate Synthesis. Applied Surface Science 256, 2569-2576.