THE INVESTIGATION OF SPECTROSCOPIC AND THEORETICAL METHODS OF BISISOXAOLINE DERIVATIVE OF NORBORNADIEN

In this study, the synthesis of bisisoxaoline derivative of norbornadien from heterocyclic compounds was performed via 1,3-dipolar cycloaddition reaction, the structural properties of derivative characterized by spectroscopic analysis such as FT-IR, 1H-NMR, 13C-NMR, UV-Vis and the single-crystal X-ray diffraction technique. The 3,7-bis(4-(tert-butyl)phenyl)-3a,4,4a,7a,8,8a-hexahydro-4,8-methanobenzo[1,2-d:4,5-d’]diisoxazole compound was optimized using Density Functional Theory (DFT/B3LYP) method with 6-311G(d,p) basis set in the ground state and the geometric parameters compared with single-crystal X-ray diffraction technique. The compound crystallizes in the monoclinic space group C2/c with a = 20.634(4) Å, b = 11.179(2) Å, c = 11.0690(17) Å and Z = 4 unit cell parameters. Also, the spectral results were examined with calculated vibrational frequencies, 1H-NMR, 13C-NMR chemical shift values and absorption wavelengths, theoretically. The energetic behaviour of the compound in different solvent media was examined with TD-DFT/B3LYP method and 6-311G(d,p) basis set using the Conductor Polarizable Continuum Model (CPCM). The frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) and electronic structure parameters (dipole moment, electronegativity, chemical hardness-softness, ionization potential, electron affinity, etc.) were examined to get information about the chemical stability of the structure. 

___

  • [1] a)Padwa A. 1,3-Dipolar Cycloaddition Chemistry II. 3rd. Ed. New York, NY, USA: Wiley Press, 1984.
  • b)Padwa A. Synthetic Application of 1,3-dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products. 3rd. Ed. New York NY, USA: Wiley Press, 2001.
  • [2] a)Kaur K, Kumar V, Sharma AK, Gupta GK. Isoxazoline containing natural products as anticancer agents: A Review. Eur J Med Chem. 2014; 77:121-33.
  • b)Pekka KP, Tuomas O, Mikael P, Jorma JP, Janne AI, Reino L, Juha TP. Design, Synthesis, and Biological Evaluation of Nonsteroidal Cycloalkane[d]isoxazole-Containing Androgen Receptor Modulators. J. Med Chem 2012; 55 (14): 6316–6327.
  • [3] Bolvig T, Larsson OM, Pickering DS, Nelson N, Falch E, Krogsgaard-Larsen P, Schousboe A. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur J Pharmacol. 1999; 375(1-3):367-74.
  • [4] Tangallapally RP, Yendapally R, Daniels AJ, Lee REB, Lee RE. Nitrofurans as Novel Anti-tuberculosis Agents: Identification, Development and Evaluation. Curr Top Med Chem 2007; 7:509–526
  • [5] Rakesh DS, Lee RB, Tangallapally RP, Lee RE.Synthesis, optimization and structure–activity relationships of 3,5-disubstituted isoxazolines as new anti-tuberculosis agents. Eur J Med Chem 2009; 44:460–472.
  • [6] Werner A. Über die Raumliche Anordnung der Atome in Stick Stoff Haltisen Molekülen. Berichte 1890; 23:11-30.
  • [7] a)Tranmer GK, MolybdenumWT. Mediated Cleavage Reactions of Isoxazoline Rings Fused in Bicyclic Frameworks. Org. Lett 2002; 4 (23): 4101–4104
  • b)Murphy JJ, Hamilton JG, Paton R M.Synthesis and ring opening metathesis polymerisation of isoxazolino and isoxazolidino-norbornenes. Polymer 2006; 47 (10): 3292-3297.
  • [8] Eryılmaz S, Gül M, İnkaya E, İdil Ö, Özdemir Namık. Synthesis, Crystal Structure Analysis, Spectral Characterization, Quantum Chemical Calculations, Antioxidant and Antimicrobial Activity of 3-(4-chlorophenyl)-3a,4,7,7a-tetrahydro-4,7-methanobenzo[d]isoxazole. J Mol Struct 2016; 1122: 219-233.
  • [9] Stoe&Cie, X-AREA (Version 1.18), Stoe&Cie GmbH, Darmstadt, Germany, 2002.
  • [10] Sheldrick GM. SHELXS-97. Program for the Solution of Crystal Structures. University of Gottingen. 1997.
  • [11] Farrugia LJ. J Appl Crystallogr 1999; 30: 837-838.
  • [12] Sheldrick GM. Acta Crystallogr 2015; C71: 3-8.
  • [13] Stoe&Cie, X-RED (Version 1.04), Stoe&Cie GmbH, Darmstadt, Germany, 2002.
  • [14] Spek AL. Acta Crystallogr D 2009; 65: 148-155.
  • [15] Frisch, M. J. et al. Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT, 2009.
  • [16] Dennington, Roy; Keith, Todd; Millam, John. GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, 2009.
  • [17] a)Becke AD.Density-functional exchange-energy approximation with correct asymptotic behavior. J Chem Phys 1988; 38: 3098-3100.
  • b)Becke AD.Density-Functional Thermochemistry. I. The Effect of the Exchange-Only Gradient Correction. J Chem Phys1992; 96: 2155-2160.
  • c)Becke AD.Density functional thermochemistry III. The role of exact exchange. J Chem Phys1993; 98: 5648-5652.
  • [18] Ditchfield R,Hehre WJ, Pople JA.Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules
  • J Chem Phys1971; 54: 724-728.
  • [19] Lee C, Yang CW, Parr R.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev1988; 37: 785–789.
  • [20] Merrick JP, Moran D, Radom L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J Phys Chem A 2007; 111: 11683-11700.
  • [21] a)London F.Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J Phys Radium 1937; 8: 397-409.
  • b)McWeeny R. Perturbation Theory for the Fock-Dirac Density Matrix
  • Phys Rev 1962; 126: 1028.
  • c)Ditchfield R. Self-consistent perturbation theory of diamagnetism.Mol Phys 1974; 27: 789-807.
  • d)Wolinski K, Hilton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 1990; 112: 8251-8260.
  • e)Cheeseman JR, Trucks GW, Keith TA, Frisch MJ. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J Chem Phys 1996; 104: 5497-5509.
  • [22] Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 1998; 102: 1995-2001.
  • [23] Jin YX, Zhong AG, Ge CH, Pan FY, Yang JG, Wu Y, Xie M, Feng HW. A novel difunctional acylhydrazone with isoxazole and furan heterocycles: Syntheses, structure, spectroscopic properties, antibacterial activities and theoretical studies of (E)-N0 -(furan-2-ylmethylene)-5-methylisoxazole-4- carbohydrazide. J Mol Struct 2012; 1010: 190-196.
  • [24] Tamer Ö, Avcı BS, Avcı D, Nebioglu M, Atalay Y, Çoşut B.Synthesis, molecular structure, spectral analysis and nonlinear optical studies on 4-(4-bromophenyl)-1-tert-butyl-3-methyl-1H-pyrazol-5- amine: A combined experimental and DFT approach.J Mol Struct 2016; 1106: 89-97.
  • [25] Dege N, Senyüz N, Batı H, Günay N, Avcı D, Tamer O, Atalay Y. The synthesis, characterization and theoretical study on nicotinic acid [1-(2,3-dihydroxyphenyl)methylidene]hydrazide. Spectrochim Acta A 2014; 120: 323-331.
  • [26] Eryılmaz S, Gül M, İnkaya E, Taş M. Isoxazole Derivatives of Alpha-pinene Isomers: Synthesis, Crystal Structure, Spectroscopic Characterization (FT-IR/NMR/GC-MS) and DFT Studies. J Mol Struct 2016; 1108: 209-222.
  • [27] Mohan J. Organic Spectroscopy:Principles and Applications. 2nd Ed. Harrow, UK: Alpha Science, 2004.
  • [28] Erdik E. Organik Kimyada Spektroskopik Yöntemler. 5. Baskı. Ankara, Türkiye: Gazi Kitabevi, 2008.
  • [29] Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. 1st Ed. Chichester, England:Wiley 2004.
  • [30] Zhang XH, Zhan YH, Chen D, Wang F, Wang LY. Merocyanine dyes containing an isoxazolone nucleus: Synthesis, X-ray crystal structures, spectroscopic properties and DFT studies. Dyes and Pigm 2012; 93: 1408-1415.
  • [31] Jin RY, Sun X H, Liu YF, Long W, Chen B, Shen SQ, Ma HX. Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives. Spectrochim Acta A 2016; 152: 226-232.
  • [32] Kalinowski HO, Berger S, Braun S. Carbon-13 NMR Spectroscopy. 1st ed. Chichester, UK John Wiley&Sons, 1988.
  • [33] Pihlaja K, Kleinpeter E. Carbon-13 Chemical Shifts in Structural and Stereochemical Analysis. 1st ed. USA: Wiley-VCH Publishers, 1994.
  • [34] Balcı M. Nükleer Manyetik Rezonans Spektroskopisi. 2. Baskı. Ankara, Türkiye:ODTÜ Yayıncılık, 2004.
  • [35] İnkaya E, Günnaz S, Özdemir N, Dayan O, Dinçer M, Çetinkaya B. Synthesis, spectroscopic characterization, X-ray structure and DFT studies on 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine. Spectr Acta Part A 2013; 103: 255–263.
  • [36] İnkaya E, Dinçer M, Ekici Ö, Çukurovalı A. N′-(2-methoxy-benzylidene)-N-[4-(3-methyl-3-phenyl-cyclobutyl)-thiazol-2-yl]-chloro-acetic hydrazide: X-ray structure, spectroscopic characterization and DFT studies. J Mol Struct 2012; 1026:117-126.
  • [37] Fleming I. Frontier Orbitals and Organic Chemical Reactions. London, UK:Wiley, 1976.
  • [38] Tarı GÖ, Gümüş S, Ağar E. Crystal structure, spectroscopic studies and quantum mechanical calculations of 2-[((3-iodo-4-methyl)phenylimino)methyl]-5-nitro thiophene. Spectromica Acta Part A 2015; 141: 119-127.
  • [39] Vijayaraj R,Subramanian V, Chattaraj PK. Comparison of Global Reactivity Descriptors Calculated Using Various Density Functionals: A QSAR Perspective. J Chem Theory Comput 2009; 5(10): 2744–2753.
  • [40] Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbe A, Roy D R, Chattaraj PK. Multiphilic Descriptor for Chemical Reactivity and Selectivity. J. Phys. Chem. A 2007; 111: 9130-9138.
  • [41] a)Koopmans T. Physica 1. 1933; 104.
  • b)Vektariene A, Vektaris G. J Svoboda.A theoretical approach to the nucleophilic behavior of benzofused thieno[3,2-b]furans using DFT and HF based reactivity descriptors. ARKIVOC 2009; vii: 311-329.
  • [42] Mulliken RS. J Chem Phys 1934; 2: 782.
  • [43] a)Pearson RG.Hard and Soft Acids and Bases. J Am Chem Soc1963; 85:3533-3539
  • b)Pearson RG. Hard and soft acids and bases, HSAB, part 1: Fundamental principles.
  • J Chem Educ1968;45(9): 581.
  • c)Pearson RG. Maximum Chemical and Physical Hardness. J Chem Educ1999;2 (76): 267.
  • [44] Pearson RG. Absolute electronegativity and hardness correlated with molecular orbital theory. Pro Nat Acad Scie 1986; 83: 8440-8441.
  • [45] Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity.
  • J Am Chem Soc 1983;105: 7512-7516.
  • [46] Chattaraj PK, Sarkar U, Roy DR. Electrophilicity index. Chem Rev 2006; 106: 2065-2091
  • [47] İnkaya E, Dinçer M, Ekici Ö, Çukurovalı A. 1-(3-Methyl-3-mesityl)-cyclobutyl-2-(5-pyridin-4-yl-2H-[1,2,4]triazol-3-ylsulfanyl)-ethanone: X-ray structure, spectroscopic characterization and DFT studies. Spect Acta Part A 2013; 101: 218-227.