HYDROTHERMAL SYNTHESIS of ZnO FILMS and CHARACTERIZATION

In this study, ZnO films were produced by hydrothermal synthesis onto glass substrates. The structural properties of ZnO films were examined using X-ray diffraction (XRD) techniques. According to XRD results, the high quality polycrystalline ZnO films were achieved at low temperature. Spectroscopic ellipsometry (SE) technique and Cauchy-Urbach model were used to the important optic constants of films as the thickness (d), refractive index (n) and extinction coefficient (k). The transmittance, absorbance and reflectance spectra of films were obtained by Uv-vis spectrophotometer and optical properties were analyzed using these spectra. Also, the surface properties, roughness and electrical resistivity values were investigated by atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and four-probe technique, respectively. Finally, the characterization results of ZnO films showed that, hydrothermal synthesis allowed production of ZnO films which higher quality than other techniques at low temperature.

___

  • [1] Kumar M, Kim T. H, Kim S. Lee B. T. Growth of epitaxial p-type ZnO thin films by
  • codoping of Ga and N. Appl. Physics. Lett 2006; 89:112103.
  • [2] Shivaraj B. W, Narasimha Murthy H. N, Krishna M, Satyanarayana B.S. Effect of Annealing Temperature on Structural and Optical properties of Dip and Spin coated ZnO Thin Films. Procedia Materials Science 2015; 10:292 – 300.
  • [3] Kenanakis G, Katsarakis N, Koudoumas E. Influence of precursor type, deposition time and doping concentration on the morphological, electrical and optical properties of ZnO and ZnO:Al thin films grown by ultrasonic spray pyrolysis. Thin Solid Films 2014; 555:62-67.
  • [4] Urgessa Z. N, Oluwafemi O. S, Botha J. R. Hydrothermal synthesis of ZnO thin films and its electrical characterization. Material Letters 2012; 79:266-269.
  • [5] Taunk P. B, Das R, Bisen D. P, Tamrakar R. K, Rathor N. Synthesis and optical properties of chemical bath deposited ZnO thin film. International Journal of Modern Science 2015; 1 (3):159-165.
  • [6] Kaur G, Mitra A, Yadav K. L. Pulsed laser deposited Al-doped ZnO thin films for optical applications. Progress in Natural Science: Materials International 2015; 25:12-21.
  • [7] Choopun S, Tabata H, Kawai T. Self-assembly ZnO nanorods under argon atmosphere.
  • J. Cryst. Growth 2005; 274:167-172.
  • [8] Vayssieres I, Keis K, Lindquist S, Hagfelt A. Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes. J. Phys. Chem. B 2001; 105:3350.
  • [9] Yang L. L, Zhao Q. X, Willander M. J. Size- controlled growth of well-alliged ZnO nanrod arrays with two-step chemical bath deposition method. J. Alloys Compd 2009; 469:623-629.
  • [10] Jacobs K, Balitsky D, Armand P, Papet P. Low-temperature chemical bath deposition of crystalline ZnO. Solid State Sci. 2010; 12:333-338.
  • [11] Weintraub B, Zhou Z, Li Y, Deng Y. Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale 2010; 2:1573-1587.
  • [12] Zelalem N. U, Oluwatobi S. O, Johannes R. B. Hydrothermal synthesis of ZnO thin
  • films and its electrical characterization. Material Letters 2012; 79:266-269.
  • [13] Sun Y, Ashfold M, Fuge M. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chem. Phys. Lett 2004; 396:21-26.
  • [14] Rajkumar P. V, Ravichandran K, Baneto M, Ravidhas C, Sakthivel B, Dineshbabu N.
  • Enhancement of optical and electrical properties of SILAR deposited ZnO thin films through
  • flüorine doping and vacuum annealing for photovoltaic applications. Material Science and
  • Semiconductor Processing 2015; 35:189-196.
  • [15] Muthukrishnan K, Vanaraja M, Boomadevi S, Karn R. K, Singh V, Singh P. K, Pandiyan K. Studies on acetone sensing characteristics of ZnO thin film prepared by sol-gel dip coating. Journal of Alloys and Compounds 2016; 673:138-143.
  • [16] Son N. T, Noh J. S, Park S. Role of ZnO thin film in the vertically aligned growth of ZnO nanrods by chemical bath deposition. Applied Surface Science 2016; 379:440-445.
  • [17] Suryanarayana C, Norton M. G, X-ray Diffraction-A Pratical Approroach, Plenum
  • Press, New York and London (1998), p. 125.
  • [18] Romerdo R, Leinen D, Dalchiele E. A, Ramos-Barrado J. R, Martin F. The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al-doped ZnO thin films obtained by spray pyrolysis. Thin Solid Films 2006; 515:1942-1949.
  • [19] Yang Y, Sun X.W, Chen B. J, Xu C. X, Chen T. P, Sun C. Q, Tay B. K, Sun Z. Refractive indices of textured indium tin oxide and zinc oxide thin films. Thin Solid Films 2006; 510 (1–2): 95–101.
  • [20] Khoshman J, Kordesch E. M, Optical characterization of sputtered amorphous aluminum nitride thin films by spectroscopic ellipsometry. J. Non-Cryst Sol 2005; 351: 3334–40.
  • [21] Mortezaali A, Taheri O, Hosseini Z. S. Thickness effect of nanostructured ZnO thin films prepared by spray method on structural, morphological and optical properties. Microelectronic Engineering 2016; 151:19–23.
  • [22] Lmai F, Moubah R, Amiri A. El, Abid ., Soumahoro I, Hassanain N, Colis S, Schmerber G, Dinia A., Lassri H. Spin wave study and optical properties in Fe-doped ZnO thin films prepared by spray pyrolysis technique. Optical Material 2016; 57:28-33.
  • [23] Muchuweni E, Sathiaraj T. S, Nyakotyo H. Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceramic International 2016; 42 (8):10066-10070.
  • [24] Mimouni R, Kamoun O, Yumak A, Mhamdi A, Boubaker K, P Petkova, Amlouk M. Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds. Journal of Alloys and Compounds 2015; 645:100-111.
  • [25] Chaabouni F, Abaab M, Rezig B, Effect of the substrate temperature on the properties of ZnO films grown by RF magnetron sputtering. Mater. Sci. Eng. B 2004; 109:236–40.
  • [26] Chua S. J, Le H. Q, Tay C. B, Loh K. P, Fitzgerald E. Vertically Aligned Single Crystalline ZnO Nanorods Grown by Hydrothermal Synthesis and Theoretical Model for Predicting the Rod Denstiy. MRS Proceding 2006; 957:0957-K07-10.