DETECTION OF “WALL THINNING” TYPE DEFECTS IN PIPELINES BY THERMAL METHOD

A thermophysical model of a pipe with a local defect of the “wall thinning” type is developed. Calculations of thermal anomalies for pipelines with different parameters of hidden defects are performed, illustrating the possibility of using the thermal method of nondestructive testing. The conditions and methods of thermal control of individual sections of pipelines are specified. Thermal imaging examination of steam pipelines of the main condensate of the nuclear power plant was carried out. External factors that make it difficult to detect hidden defects (the influence of external lighting, cylindrical shape of controlled objects, powerful external heat sources) are analyzed. It was found that cavitation phenomena significantly increase the temperature drop in the locations of local defects. The possibility of using the thermal method of nondestructive testing for rapid detection of hidden defects such as “wall thinning” in the pipelines of the main condensate has been confirmed experimentally

___

  • Khusnutdinova IG, Bashirov MG, Bakirov IK. Analysis of emergency situations due to the defects appearance in metal elements of shell-type structures in oil and gas industry. Problemy sbora, podgotovki i transporta nefti i nefteproduktov, 2017; 2: 155–164.
  • Wright M. Sure2Grip-Quality assurance and structural evaluation of GRP pipes. In: The 9th European Conference on Non-Destructive Testing, Conference Proceedings, Berlin, 25-29 September 2006.
  • Maldague X. Pipe inspection by infrared thermography. Materials Evaluation, 1999; 57: 899–902.
  • Nerazrushayushchiy kontrol': Spravochnik v 7 t. Pod obshch. red. V.V.Klyueva. T.5: V 2 kn. Kn. 1: Teplovoy kontrol'. Mashinostroenie, Moskva, 2004.
  • Storozhenko VA, Maslova VA. Termografiya v diagnostike i nerazrushayushchem kontrole. Smit, Khar'kov, 2004.
  • Vavilov VP. Infrakrasnaya termografiya i teplovoy kontrol'. Spektr, Moskva, 2009.
  • Obbadi A, Belattar S. Characterization of delamination by a thermal method of non destructive testing. In: Proc. Vth International Workshop, Advances in Signal Processing for Non Destructive Evaluation of Materials, Quebec City (Canada), 2-4 Aug. 2005: 203–208.
  • Tikhonov AN, Samarskiy AA. Uravneniya matematicheskoy fiziki. MGU, Moskva, 2004.
  • Storozhenko VA, Myagkiy AV, Saprykin SA, Meshkov SN. Primenenie termograficheskogo metoda kontrolya dlya opredeleniya soderzhaniya zhidkoy fazy v gazoprovodakh. Metodi ta priladi kontrolyu yakostі, 2009; 23: 12–15.
  • Meshkov SN, Orel RP. Faktory, snizhayushchie dostovernost' teplovizionnoy diagnostiki truboprovodov agregatnykh zalov AES. Vіsnik Natsіonal'nogo tekhnіchnogo unіversitetu KhPІ, Serіya: Elektroenergetika ta peretvoryuval'na tekhnіka, 2018; 8: 39–44.
  • Storozhenko VA, Meshkov SN, Gaptrakipov AA. Teplofizicheskoe modelirovanie protsessov vyyavleniya defekta v ob"ektakh tsilindricheskoy formy pri teplovom nerazrushayushchem kontrole. Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol', 2004; 4: 37–40.
  • Pirsol I. Kavitatsiya. Moskva, Mir, 1975.
  • Nefedov YuI, Storozhenko VA, Bragin SS. Kavitatsionnyy energosberegayushchiy teplogenerator – gidrotaran. Energetika, Energosberezhenie, Energoaudit, 2011; 5: 9–14.