Tungsten İlavesinin Fe3Al Alaşımının Oksitlenme - Sülfürlenme Özelliklerine ETKİSİ

 Fe-28Al ve üçlü Fe–28Al–xW  (x= at.% 0,5; 1 ve 1,5) alaşımlarının, 900– 1000 °C sıcaklık aralığında hacime %6 CO2, %80,6 N2, %13 O2, 4000 ppm SO2 içeren gaz karışımında yüksek sıcaklıklardaki korozyon davranışı çalışılmıştır. Başlangıçtaki hızlı korozyon basamamağından sonra alaşımların 5x10-6 ve 5x10-7 mg2/cm4/sn aralığında hesaplanan parabolik hız sabitleri ile korozyonun parabolik hız kanununa uyduğu bulunmuştur. W elementinin ilavesi ile ikili Fe-28Al alaşımının  yüksek sıcaklık parabolik hız sabitlerinde artış görülmüştür. Ancak katastrofik korozyon görülmemiştir.

Effect Of Tungsten Addıtıon On Oxıdatıon-Sulfıdatıon Behavıour Of Fe3al Alloys

 The high-temperature corrosion behavior of Fe-28Al and three Fe–28Al–xW (where x=0.5, 1, and 1.5 at.%) ternary alloys were studied in the temperature range of 900–1000 °C in N2/O2/CO2/SO2 mixed gases. After an initial corrosion stage, the oxidation obeyed the parabolic rate law, with parabolic rate constants with curve fits over the entire exposure range from 5x10-6to 5x10-7 mg2/cm4/s calculated. It was found that the additon of W increased the parabolic rate constants of the  Fe–28Al base alloy studied. No catastrophic corrosion behavior was observed. 

___

  • [1] S.C. Deevi , V.K.Sikka , and C.T. Liu, “Processing, properties, and applications of nickel and iron aluminides”, Materials Science, Vol. 42, pp.177-192, 1997.
  • [2] G.Y. Lai, “High-temperature Corrosion of Engineering Alloys”, Kokomo, Indiana,1990.
  • [3] C.G. McKamey, J.H. Devan, P.F. Tortorelli, V.K. Sikka, “A review of recent developments in Fe3A1-based alloys”, J. Mater. Res. 6, pp.1779-1805, 1991.
  • [4] S. Yangshan , Z.Zhonghua, X.Feng, Y. Xingquan , “Tensile and creep properties of Fe3Al-based alloys containing tungsten”, Materials Science and Engineering, A, 258, pp. 167-172, 1998.
  • [5] S. Yangshan, X. Feng, G. Jun, “Tensile properties and creep resistance of Fe3Al-based alloys with tungsten addition”, Journal of Materials Science Letters, 17, pp.181-184, 1998.
  • [6] F. Lang , Z.Yu , S. Gedevanishvili , S.C. Deevi, S. Hayashi, T. Narita, “Corrosion behavior of Fe-40Al sheet in N2-11.2O2-7.5 CO2 atmospheres with various SO2 contents at 1273 K”, Intermetallics, vol.11, pp. 135-141, 2003.
  • [7] K. Natesan, “High-temperature corrosion in coal gasification systems”, Corrosion, vol.41, pp. 646-655, 1998.
  • [8] W. Gao, and Z. Li, “Developments in High-temperature Corrosion and Protection of Materials”, Woodhead Publishing, Cambridge, England, 2008.
  • [9] S.A. Bradford, “Fundamental corrosion in gases”, Corrosion, Vol.13, pp. 61-76, 1987.
  • [10] S.W.Banovic, J.N. DuPont, and A.R. Marder, “High temperature sulfidation behavior of low Al iron-aluminium compositions” , Scripta Materialia, Vol. 38, No. 12, pp. 1763–1767, 1998.
  • [11] W.H. Lee, and R.Y. Lin, “Oxidation, sulfidation and hot corrosion of intermetallic compound Fe3Al at 605°C and 800°C”, Materials Chemistry and Physics, Vol.58, pp. 231-242, 1999.
  • [12] N. Babu, R. Balasubramaniam, A. Ghosh, “High-temperature oxidation of Fe3Al- based iron aluminides in oxygen”, Corrosion Science, Vol. 43, pp. 2239-2254, 2001.
  • [13] C.T. Liu, J. Stringer, J.N. Mundy, L.L. Horton, P. Angelini, “Ordered intermetallic alloys: An assessment”, Intermetallics, Vol. 5, pp. 579-596, 1997.
  • [14] P.F. Tortorelli, and J.H. DeVan, “Behavior of iron aluminides in oxidizing and oxidizing/sulfidizing environments”, Materials Science and Engineering: A, Vol. 153, Issues 12, pp. 573-577. 1992.