Theoretıcal Studıes On Acıd- Base Behavıour Of Some Alkyl Substıtuted Pyrıdıne Derıvatıves

The geometries, heat of formations (ǻHf), entropies (ǻS),  proton affinities (PA), atomic charges (q), nucleophilicities (n), substituted constants (ı) and local electrophilic sensitivities (s), were calculated for some alkylated pyridine derivatives after full geometry optimization using AM1, PM3 and PM5  methods in both aqueous and gas phases for studied molecules. The calculated acidity constants, pKa values, were evaluated by means of searching the possible correlation between experimentally obtained results and the computed data. 

Theoretıcal Studıes On Acıd- Base Behavıour Of Some Alkyl Substıtuted Pyrıdıne Derıvatıves

The geometries, heat of formations (ǻHf), entropies (ǻS),  proton affinities (PA), atomic charges (q), nucleophilicities (n), substituted constants (ı) and local electrophilic sensitivities (s), were calculated for some alkylated pyridine derivatives after full geometry optimization using AM1, PM3 and PM5  methods in both aqueous and gas phases for studied molecules. The calculated acidity constants, pKa values, were evaluated by means of searching the possible correlation between experimentally obtained results and the computed data. 

___

  • [1] W. Marczak, A. Heintz, M.J. Bucek , “Calorimetric investigations of hydrogen bonding in binary mixtures containing pyridine and its methyl-substituted derivatives. II. The dilute solutions of methanol and 2-methyl-2-propanol’’, Chem. Thermodyn, Vol.36, pp.575-582, 2004.
  • [2] P. Zhong, S.R. Guo, C.S. Song, “A simple and efficient method for the preparation of heterocyclic N-oxide’’, Synth. Commun., Vol.34, pp.247-253, 2004.
  • [3] P.O. Dunstan, “Thermochemistry of adducts of tin(IV) bromide with heterocyclic bases’’, Thermochim. Acta, Vol.404, pp.117-123, 2003.
  • [4] M. Bhoopal, D.P. Kumar, S. Satyanarayana, “Equilibrium constants for the pH-dependent axial ligation of alkyl(aquo)cobaloximes by pyridine and substituted pyridines’’, J. Indian Chem. Soc., Vol.80, pp.683-686, 2003.
  • [5] P.O. Dunstan, “Thermochemistry of adducts of tin(IV) chloride with heterocyclic bases’’, Thermochim. Acta, Vol.398, pp.1-7, 2003.
  • [6] W. Marczak, J.K. Lehman, A. Heintz, ‚‘‘Calorimetric investigations of hydrogen bonding in binary mixtures containing pyridine and its methyl-substituted derivatives. I. The dilute solutions of water’’, J. Chem. Thermodyn., Vol.35, pp.269-278, 2003.
  • [7] D. Augustin-Nowacka, M. Makowski, L. Chmurzynski, “Potentiometric studies of cationic heteroconjugation equilibria in systems involving free and protonated pyridine derivatives in dimethyl sulfoxide”, J. Chem. Thermodyn., Vol.34, pp.391- 400, 2002.
  • [8] E. Kaczmarczyk, D. Augustin-Nowacka, M. Makowski, A. Kozak, L. Chmurzynski, “A study of the tendency of organic bases towards cationic heteroconjugation in polar non-aqueous solvents”, J. Chem. Soc.- Perkin Trans. 2, Vol.9, pp.1844-1849, 2001.
  • [9] M. Kurihara, T. Kawashima, K., ‘‘Ozutsumi, Complexation of cobalt(II), nickel(II), and copper(II) ions with pyridine, 2-methylpyridine, 3-methylpyridine, and 4-methylpyridine in acetonitrile”, Z.Naturforsch. (B-A), Vol.55 , pp.277-284, 2000. [10] T. Yoshimura, K. Umakoshi, Y. Sasaki, S. Ishizaka, H. B. Kim, N. Kitamura, “Emission and metal- and ligand-centered-redox characteristics of the hexarhenium(III) clusters trans- and cis[Re-6(mu(3)-S)(8)Cl-4(L)(2)](2-), where L is a pyridine derivative or pyrazine”, Inorg. Chem., Vol.39, pp.1765-1772, 2000.
  • [11] R. Wrobel, E. Kaczmarczyk, L. Chmurzynski, ‘‘Potentiometric determination of standard acidity and cationic standard homoconjugation constants of substituted pyridine N-oxide systems in (acetonitrile plus methanol)”, J. Chem. Thermodyn., Vol.31, pp.1561-1571, 1999. [12] S. Suzuki, H. Onishi, T. Sasaki, K. Fukui, Y. Iwasawa, “Identification of individual 4methylpyridine molecules physisorbed and chemisorbed on TiO2(110)-(1x1) surface by STM”, Catal. Lett., Vol.54, pp.177-180, 1998.
  • [13] H. WilczuraWachnik, E. Megiel, T.KasprzyckaGuttman, ‘‘Excess enthalpies for 4-methyltoluene plus pyridine, plus 2-methylpyridine, plus 3-methyipyridin plus 4-methylpyridine, plus 2,4dimethylpyridine, plus 2,6-dimethylpyridine, plus 2,4,6-trimethylpyridine at 298.15 K”, J. Chem. Eng. Data, Vol.41, pp.1514-1516, 1996.
  • [14] A. Chardin, C. Laurence, M. Bertholet, “2,6-di-tert-butylpyridine: A pi-hydrogen-bond base”, J. Chem. Res.-S, Vol.7, pp.332-333, 1996.
  • [15] L. Cattalini, F. Guidi,. M.L. Tobe, “the cis-effects and trans-effects of cyanide in substitution at platinium(ii)”, J. Chem. Soc.-Dalton Trans., Vol.2, pp.233-236, 1993.
  • [16] M. Ishihara, T. Tsuneya, M. Shiga, S. Kawashima, K. Yamagishi, F. Yoshida, H. Sato, K. Uneyama, “new pyridine-derivatives and basic components in spearmint oil (menta-gentilis f cardiaca) and peppermint oil (mentha-piperita)”, J. Agric. Food Chem., Vol.40, pp.1647-1655, 1992.
  • [17] E. Kapinos, H. Sigel, “Acid-base and metal ion binding properties of pyridine-type ligands in aqueous solution. Effect of ortho substituents and interrelation between complex stability and ligand basicity”, Inorg. Chim. Acta, Vol.337, pp.131-142, 2002
  • 18] P.O. Dunstan, “Thermochemistry of adducts of tin(IV) chloride with heterocyclic bases”, Thermochim. Acta, ,Vol.398, pp.1-7, 2003.
  • [19] S. Solar, N. Getoff, K. Sehested, J. Holcman, “pulse-radiolysis of pyridine and methylpyridines in aqueous-solutions”, Radiat. Phys. Chem,., pp.Vol.41, 825-834, 1993.
  • [20] C. Bueno, J. Guerrero, M.V. Encinas, “Spectroscopic properties of 4-pyridoxic acid as a function of pH and solvent”, Helv. Chim. Acta, Vol.87, pp.940-948, 1993.
  • [21] L.E. Kapinos, H. Sigel, “Acid-base and metal ion binding properties of pyridine-type ligands in aqueous solution. Effect of ortho substituents and interrelation between complex stability and ligand basicity”, Inorg. Chim. Acta, Vol.337, pp.131-142, 2002.
  • [22] Y. Akiyama, A. Wakisaka, F. Mizukami, K. Sakaguchi, “Solvent effect on acid-base clustering between acetic acid and pyridine”, J. Chem. Soc., Perkin Trans. 2, Vol.1, pp.95-99, 1998.
  • [23] A. Wakisaka, Y. Yamamoto, Y. Akiyama, H. Takeo, F. Mizukami, K. Sakaguchi, “Solvationcontrolled clustering of a phenol-pyridine acid-base pair”, J.Chem.Soc.-Faraday Trans., Vol.92, pp.3339-3346, 1996.
  • [24] T. Mehdoui, J. C.Berthet, P. Thuery, M. Eqhritikhine, “Lanthanide(III)/actinide(III) differentiation in coordination of azine molecules to tris(cyclopentadienyl) complexes of cerium and uranium”, J. Chem. Soc.-Dalton Trans., Vol.4, pp.579-590, 2004.
  • [25] M. Bertholet, J.F,Gal, C. Laurence, P.C. Maria, “chemometrics of basicity .1. comparison of the basicity of o-substituted, m-substituted and p-substituted substituted pyridines towards borontrifluoride and methanol”, J. Chim. Phys.- Chim. Biol., Vol.81, pp.327-331, 1984,.
  • [26] E.C.Yang, X.J, Zhao, H. Fang, “Quantum-chemical studies on the interactions of beta-cyclodextrin and 4-methylpyridine”, Indian J. Chem. Sect. A-Inorg. Bio.-Inorg. Phys. Theo Anal. Chem., Vol.44, pp.291-295, 2005.
  • [27] M. Monajjemi, F. Mollaamin, M.R,Gholami, H. Yoosbashizade, S.K. Sadrnezhad, H, Passdar, “Quantum chemical parameters of some organic corrosion inhibitors, pyridine, 2-picoline 4picoline and 2,4-lutidine, adsorption at aluminum surface in hydrocholoric and nitric acids and comparison between two acidic media”, Main Group Met. Chem., Vol.26, pp.349-361, 2003.
  • 28] Z. DegaSzafran, A. Kania, M .GrundwaldWy Spianska, M. Szafran, E.Tykarska, “Differences between the N center dot H center dot O and O center dot H center dot O hydrogen bonds in complexes of 2,6-dichloro-4-nitrophenol with pyridines and pyridine N-oxides”, J. Mol. Struct., Vol.381, pp.107-125, 1996.
  • [29] E. Lorenz, M. Maczka, K. Hermanowicz, A. Waskowska, A. Puszko, J. Hanuza, “Temperaturedependent Raman, IR and X-ray studies of 2-ethylimino-4-nitropyridine N-oxide”, Vib. Spectrosc., Vol.37, pp.195-207, 2005.
  • [30] A. Szemik-Hojniak, T. Glowiak, A. Puzsko, Z. Talik, “Structural and spectral analysis of ortho- and meta-substituted nitraminopyridine N-oxides”, J. Mol. Struct, Vol.449, pp.77-90, 1998.
  • [31] N. Tokay, C. Ö÷retir, “A theoretical approach to experimental nitration of phenyl and benzyl substituted pyridine derivatives”, J. Mol. Struct. (Theochem), Vol.626, pp.113-120, 2003.
  • [32] N. Tokay, C. Ö÷retir, “A theoretical approach to experimental nitration of phenyl and benzyl substituted pyridine-N-oxide derivatives”, J. Mol. Struct. (Theochem), Vol.629, pp.51-59,2003,.
  • [33] C. Ö÷retir, D. Özö÷üt, S. Yarlõgan, T. Arslan, “Quantum chemical studies on acidity-basicity behaviours of some substituted pyridine derivatives”, J. Mol. Struct. (Theochem), Vol.759, pp.7378, 2006.
  • [34] J.J.P. Stewart, “MOPAC 2002 Implemented in Cache Work System Pro.”, Version 6.1, Fujitsu Ltd.
  • [35] C.D. Johnson, “The Hammett Equation”, Cambidge University Press, London , 1973.
  • [36] K. Fukui,” Molecular Orbitals in Chemistry. Physics and Biology.”, New York: Academic Press., 1964. [37] M. Karelson, V.S. Lobanov. A.R. Katritzky. “Quantum-chemical descriptors in QSAR/QSPR Studies”. Chem. Rev.. Vol.96. pp.1027–1043. 1996.
  • [38] A.R. Katritzky, G. Baykut, S. Rachwal, M. Szafran, K.C. Caster, J. Eyler , “The Tautomeric Equilibria of Thio Analogs of Nucleic-Acid Bases, 1,2-thiouracil-Background, Preparatõon of Model Compounds and Gas-Phase Proton Affinities”, J. Chem. Soc.-Perkin Trans. 2, Vol.10, pp.1499-1506, 1989.
  • [39] A. Albert, A.R. Katritzky (ed.).“Physical Methods in Heterocyclic Chemistry”. Academic Press. New York. Vol.1. 1963