TIG Yöntemiyle Yüzeyi Sertleştirilen AISI 4140 Çeliğinin Mikroyapı İncelemesi

Bu çalışmada, AISI 4140 çeliğinin yüzeyi gaz tungsten ark (TIG veya GTA) tekniği kullanılarak SiC ve C tozları ile modifiye edilmiştir. Kaplanan malzemelerin mikroyapılarında işlem şartlarının değiştirilmesiyle, ara yüzeye doğru kalınlıkları değişen yönlenmiş dendritlerle birlikte, farklı Fe, C, Cr, Mo ve Si içerikli M7C3, M23C6, M2C, M3C, Fe3C, Fe2C karbürleri elde edilmiştir. Aynı zamanda mikroyapılarda farklı grafit taneciklerine de rastlanılmıştır. Sertlik değerleri yapıdaki mevcut faz ve karbürlerin varlığından dolayı önemli ölçüde artmıştır. Mikrosertlik değerleri üst tabaka kalınlığı boyunca 800-1400 HV arasında değişim gösterirken, ara yüzeye doğru gidildikçe sertlik değerlerinde bir azalma görülmüştür. En yüksek sertlik (1386 HV); 0,55 cm/s üretim hızında, 1-0,2 g/s SiC/C toz yedirme değerinde ve 28,6 kJ/cm enerji girdisi ile üretilen kaplama tabakasından elde edilmiştir.
Anahtar Kelimeler:

TIG yöntemi, karbür, dendrit

Investigation Of Microstructure Of Hardfaced AISI 4140 Steel By TIG Welding Process

In this study, a AISI 4140 steel surface was modified with SiC and C alloying powders by using of a gas tungsten arc (TIG or GTA) welding process. The results obtained from microstructural investigations indicate that the dendritic solidification resulting from eutectic reaction was observed in the modified layers together with the formation of M7C3, M23C6, M2C, M3C, Fe3C, Fe2C carbides at different shapes and rates. Additionally, different graphite precipitates were found in the microstructures of specimens. Hardness values of the coating layers increased because of existing phase and carbides in the microstructure. Hardness values of materials changed between 800-1400 HV along the modified layer then it decreased in interface regions. The highest hardness on coated layers measured as (1386 HV) which was produced at 0,55 cm/s production speed, 28,6 kJ/cm energy input and 1-0,2 g/s SiC/C powder content, respectively.

___

  • [1] ASM Handbook committee, ASM handbook Volume 4 Heat treating, ASM International, pdf version, 2002.
  • [2] S. Buytoz, M. Ulutan, M. M. Yildirim, “Dry sliding wear behavior of TIG welding clad WC composite coatings”, Applied Surface Science, Vol. 252, Iss. 5, pp. 1313-1323, 2005.
  • [3] S. Buytoz and M. Ulutan ,”In situ synthesis of SiC reinforced MMC surface on AISI 304 stainless steel by TIG surface alloying”, Surface and Coatings Technology, Vol. 200, No. 12-13, pp. 3698-3704, 2006.
  • [4] Q. Li, G.M. Song, Y.Z. Zhang, T.C. Lei, W.Z. Chen, “Microstructure and dry sliding wear behavior of laser clad Ni-based alloy coating with the addition of SiC”, Wear, Vol. 254, pp. 222–229, 2003.
  • [5] E. Gemelli, A. Gallerie, F. C. T. Kopp, N. H. A. Camargo, “Improved surface properties of D2 steel by laser surface alloying”, Journal of Materials Science, Vol. 40, pp.5649–5653, 2005.
  • [6] I.R. Pashby, S. Barnes, B.G. Bryden, “Surface hardening of steel using a high power diode laser”, Journal of Materials Processing Technology, Vol. 139, pp. 585–588, 2003.
  • [7] M. M. Yildirim, S. Buytoz, M. Ulutan, “Microstructural Changes to SiC Coated Metallic Surfaces Produced by the TIG Welding Process on a 45Mn5 Steel”, Prakt. Metallogr., Vol. 44 (2), 59-69, 2007.
  • [8] X. Wu and G. Chen, “Nonequilibrium microstructures and their evolution in a Fe– Cr–W– Ni–C laser clad coating”, Materials Science and Engineering, A270, pp. 183–189, (1999)
  • [9] J. Khedkar, A.S. Khanna, K.M. Gupt, “Tribological behaviour of plasma and laser coated steels”, Wear, Vol.205, pp.220-227, 1997.
  • [10] A. Hidouci, J.M. Pelletier, F. Ducoin, D. Dezert, R. Guerjouma, “Microstructural and mechanical characteristics of laser coatings”, Surface and Coatings Technology, Vol.123, pp.17-23, 2000.
  • [11] M.H. Korkut, O. Yılmaz, S. Buytoz, “Effect of aging on the microstructure and toughness of the interface zone of a gas tungsten arc (GTA) synthesized Fe–Cr–Si–Mo–C coated low carbon steel”, Surface and Coatings Technology, Vol.157, pp. 5–13, 2002.
  • [12] S. Mridha, H.S. Ong, L.S. Poh, P. Cheang, “Intermetallic coating produced by TIG surface melting”, Journal of Materials Processing Technology, Vol.113, pp.516-520, 2001.
  • [13] M. Guo, A. Liu, M. Zhao, H. Hu, Z. Wang, “Microstructure and wear resistance of low carbon steel surface strengthened by plasma melt injection of SiC particles”, Surface & Coatings Technology, Vol. 202, pp. 4041–4046, 2008.
  • [14] A. Woldan, J.Kusinski, E. Tasak, “The microstructure of plain carbon steel laser-alloyed with silicon carbide”, Materials Chemistry and Physics, Vol. 81, pp. 507–509, 2003.
  • [15] G. Thawari, G. Sundarararjan, S.V. Joshi, “Laser surface alloying of medium carbon steel with SiCP ”, Thin Solid Films, Vol. 423, pp. 41–53, 2003.
  • [16] F.T. Cheng, C.T. Kwok, H.C. Man, “Laser surfacing of S31603 stainless steel with engineering ceramics for cavitation erosion resistance”, Surface and Coatings Technology, Vol. 139, pp. 14-24, 2001.
  • [17] Y.C. Lin , S.W. Wang, Wear behavior of ceramic powder cladding on an S50C steel surface”, Tribology International, Vol. 36, pp. 1–9, 2003.
  • [18] L. Bourithis, G. Papadimitriou, “Boriding a plain carbon steel with the plasma transferred arc process using boron and chromium diboride powders: microstructure and wear properties”, Materials Letters, Vol. 57, pp. 1835– 1839, 2003.
  • [19] X. Wu, “Rapidly solidified nonequilibrium microstructure and phase transformation of laser-synthesized iron-based alloy coating”, Surface and Coatings Technology, Vol. 115, pp. 153–162, 1999.
  • [20] J.R. Weng, J.T. Chang, K.C. Chen, J.L. He, “Solid/liquid erosion behavior of gas tungsten arc welded TiNi overlay”, Wear, 255, pp. 219–224, 2003.
  • [21] M. Eroglu and S. Onalp, “Tungsten inert gas surface modification of SAE 4140 steel”, Materials Science and Technology, Vol. 18, pp. 1544-1550, 2002.
  • [22] M. Eroglu and N. Ozdemir, “Tungsten-inert gas surface alloying of a low carbon steel”, Surface and Coatings Technology, Vol. 154, pp. 209–217, 2002.
  • [23] J. D. Majumdar, B. R. Chandra, A. K. Nath and I. Manna, “Laser composite surfacing of stainless steel with SiC”, Phys. Stat. Sol. (a), pp. 1–6, 2006.
  • [24] J. A. Pero-Sanz, D. Plaza, J. I. Verdeja and J. Asensio, “Metallographic Characterization of Hypoeutectic Martensitic White Cast Irons: Fe-C-Cr System”, Materials Characterization, Vol. 43, pp. 33–39, 1999.
  • [25] S. Buytoz, “Microstructural properties of SiC based hardfacing on low alloy steel”, Surface & Coatings Technology, Vol. 200, pp. 3734– 3742, 2006.
  • [26] M. Ulutan, “AISI 4140 çeliğinin yüzey sertleştirme işlemleri ve kaplama yöntemleri sonrası mekanik davranışlarının araştırılması”, Doktora tezi, , Eskişehir Osmangazi Üniv. FBE., 2007.