KİREÇLE STABİLİZE EDİLMİŞ KİL ZEMİNLERİN DAYANIMINA GECİKMİŞ KOMPAKSİYONUN ETKİSİ

Kil zeminlerin kireç katkısı kullanılarak stabilizasyonu hem ekonomik hem de çevresel etkilerden dolayı en çok tercih edilen yöntemdir. Stabilizasyon sonrası zeminin mühendislik özelliklerinde ortaya çıkan gelişme, kireç katkılı zeminlerin dolgularda kullanılmasına imkan tanır. Dolguda kullanılmak için farklı kompaksiyon enerjilerinde arazide sıkıştırılarak yerleştirilmeleri sırasında oluşması muhtemel sıkışma gecikmesi, katkılı zeminlerin performansı üzerinde önemli bir etkiye neden olur. Bu çalışmada bir yol projesinden alınan zemin örneklerinin çeşitli oranlarda sönmüş kireç katkısı ile karıştırıldıktan sonra gecikmiş kompaksiyonun zeminlerin dayanım özellikleri üzerindeki etkileri araştırılmıştır. Bu kapsamda, yüksek (CH) ve düşük (CL) plastisiteli iki ayrı kil zemin numunesine kuru ağırlıklarının % 0, 3, 6, 9, 12 ve 15’i oranında kireç eklenerek hazırlanan örnekler üzerinde, karışımdan hemen sonra ve yedi gün sonra Standart Proctor düzeyinde kompaksiyon deneyleri yapılmıştır. Gecikmiş kompaksiyonun ve kireç katkı yüzdesinin hem kompaksiyon karakteristiklerine hem de serbest dayanımına olan etkisini araştırmaya yönelik olarak toplam 22 adet kompaksiyon deneyi ve takibinde de kürsüz, 7 gün ve 28 gün küre bırakılan örnekler üzerinde de toplamda 64 adet serbest basınç deneyi yapılmıştır. Kireç katkısı ile yapılacak zemin stabilizasyonunda, özellikle uzun süreli gecikmiş kompaksiyon, zemin türüne bağlı olarak dayanım üzerinde önemli etkilere neden olduğu belirlenmiştir.

___

  • Ali H. Mohamed M. (2017). The effects of compaction delay and environmental temperature on the mechanical and hydraulic properties of lime-stabilized extremely high plastic clays. Applied Clay Science, 150, 333-341. doi: https://doi.org/10.1016/j.clay.2017.09.019
  • Al-Rawas A. A. Hago A. Al-Sarmi H. (2005). Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Building and Environment, 40(5), 681–687. doi: https://doi.org/10.1016/j.buildenv.2004.08.028
  • ASTM D2166/D2166M-16 (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA.
  • Basma A.A. and Tuncer E.R. (1991). Effect of lime on volume change and compressibility of expansive clays. Transportation Research Board, 1296, 54-61. Erişim adresi: https://trid.trb.org/view/359115
  • Bell F.G. (1996). Lime stabilization of clay minerals and soils. Engineering Geology, 42(4), 223-237. doi: https://doi.org/10.1016/0013-7952(96)00028-2
  • Cheng Y. Wang S. Li J. Huang X. Li C. Wu J. (2018). Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans. Construction and Building Materials, 187, 1031–1038. doi: https://doi.org/10.1016/j.conbuildmat.2018.08.061
  • Di Sante M. Fratalocchi E. Mazzieri F. Brianzoni V. (2015). Influence of delayed compaction on the compressibility and hydraulic conductivity of soil–lime mixtures. Engineering Geology, 185, 131–138. doi: https://doi.org/10.1016/j.enggeo.2014.12.005
  • Ford C.M. Moore R.K. Hasek B.F. (1982). Reaction products of lime treated southeastern soils. In Transportation Research Record 839, TRB, Washington, D.C., 38-40. Erişim adresi: http://onlinepubs.trb.org/Onlinepubs/trr/1982/839/839-007.pdf
  • Ghobadi M.H. Abdilor Y. Babazadeh R. (2014). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bulletin of Engineering Geology and Environment, 73(2), 611-619. doi: https://doi.org/10.1007/s10064-013-0563-7
  • Gidday B.G. and Mittal S. (2020). Improving the characteristics of dispersive subgrade soils using lime. Heliyon 6(2). doi: https://doi.org/10.1016/j.heliyon.2020.e03384
  • Jahandari S. Saberian M. Zivari F. Li J. Ghasemi M. and Vali R. (2019). Experimental study of the effects of curing time on geotechnical properties of stabilized clay with lime and geogrid. International Journal of Geotechnical Engineering, 13(2), 172-183. Doi: https://doi.org/10.1080/19386362.2017.1329259
  • Mirzababaei M. Miraftab M. Mohamed M. and McMahon P. (2013). Unconfined compression strength of reinforced clays with carpet waste fibers. Journal of Geotechnical and Geoenvironmental Engineering, 139(3), 483-493. Doi: 10.1061/(ASCE)GT.1943-5606.0000792
  • Mitchell J.K. and Hooper D.R. (1961). Influence of time between mixing and compaction on properties of a lime-stabilized expansive clay. Highway Research Board Bulletin, 304, 14-31. Erişim adresi: http://onlinepubs.trb.org/Onlinepubs/hrbbulletin/304/304-002.pdf
  • Moore J.C. and Jones R.L. (1971). Effect of soil surface area and extractable silica, alumina, and iron on lime stabilization characteristics of Illinois soils. In Highway Research Record 351, TRB, National Research Council, Washington, D.C., 87-92. Erişim adresi: https://trid.trb.org/view/126621
  • Osinubi K. J. (1998). Influence of compactive efforts and compaction delays on lime treated soil. Journal of Transportation Engineering-ASCE, 124(2), 149-155. Erişim adresi: https://trid.trb.org/view/486952
  • Parsons R.L. Johnson C.P. and Cross S.A. (2001). Evaluation of soil modification mixing procedures, Proceeding of 80th Annual Meeting, Transportation Research Board. National Research Concil, Washington, D.C.
  • Sweeney D.A. Wong D.K.H. and Fredlund D.G. (1988). Effect of lime on highly plastic clay with special emphasis on aging. Transportation Research Board, 1190, 13–23. Erişim adresi: http://onlinepubs.trb.org/Onlinepubs/trr/1988/1190/1190-002.pdf