Saldırı Tespit Sistemlerinde Makine Öğrenmesi Modellerinin Karşılaştırılması

Son yıllardaki gelişen teknolojiler neticesinde her türlü hesaplama cihazının İnternete bağlanması sağlanmıştır. Bu sayede birçok gerçek dünya problemi yeni ağ düzenine aktarılsa da bu tam-kontrol sağlanamayan sanal platform çok sayıda güvenlik açığı içermektedir. Günümüzde ağ yöneticilerin ana görevlerinden biride bu açıkları kapatmak ve sorumlu oldukları bilgisayar ağını saldırılardan korumaktır. Güvenlik duvarlarının kullanımı dışarıdan yapılan saldırıları ciddi boyutta engellese de içeriden yapılabilecek veya daha önceden karşılaşılmayan tipten saldırılara karşı zafiyetler içermektedir. Saldırı Tespit Sistemleri (STS) bu zafiyetleri ortadan kaldırmak için öncelikle tercih edilebilecek uygulamalardır. Son geliştirilen STSleri incelendiğinde dinamik bir güvenlik mekanizması geliştirmek adına özellikle Makine Öğrenmesi tabanlı sistemlere ağırlık verildiği görülmektedir. Bilgisayar donanımları ve paralel hesaplama teknolojilerinde ortaya çıkan gelişmeler ve Büyük Veri işleme teknolojilerinin, Makine Öğrenmesi tabanlı sistemlerle uyumlu kullanıldığı görülmektedir. Bu çalışmada yedi farklı makine öğrenimi algoritmaları kullanarak STSlerin geliştirilmesi amaçlanmıştır. Elde edilen sonuçlar başarım, eğitim süreleri ve çalıştırma süreleri açısından karşılaştırılarak farklı kriterlere göre uygun algoritmanın ortaya konmuştur. Bu karşılaştırma için genel kabul gören NSL-KDD veri setinden faydalanılmıştır. Başarım sonuçlarına bakınca Adaboost algoritmasının en yüksek doğruluk oranına ulaştığı görülmektedir. Ancak gerek eğitim süresi gerekse çalışma zamanı performansı göz önüne alınınca Karar Ağacı algoritmasının daha yüksek performans gösterdiği, doğruluk oranı değeri itibarı ile de Adaboost’a yakın değere sahip olduğu görülmektedir.

Comparison of Machine Learning Based Models in Intrusion Detection Systems

Abstract As a result of developing technologies in recent years, all kinds of computing devices can be connected to the Internet. In this way, many real-world problems are transferred to the new network layout, but this uncontrollable virtual platform contains many vulnerabilities. One task of network administrators is closing these leaks and protecting the network from attacks. Although use of firewalls can prevent serious attacks from outside, there are many attacks from inside or previously unknown. Intrusion Detection Systems (IDSs) are the most preferable applications to eliminate these vulnerabilities. When recently IDSs are examined, it is seen that Machine Learning-based systems are focused on in order to develop a dynamic security mechanism. It is seen that developments in hardware and parallel computing and Big Data processing technologies are used compatible with these systems. In this study, it is aimed to develop STS using seven different algorithms. Results were compared in terms of performance, training and running times, and appropriate algorithm was determined. NSL-KDD dataset was used as generally accepted-dataset. The results showed Adaboost algorithm achieves the highest accuracy. However, when both training-time and runtime performance are considered, Decision Tree algorithm performs better and close to Adaboost in terms of accuracy.

___

  • Ahmad I., Basheri M., Iqbal M. J. and Rahim A. (2018) "Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection," in IEEE Access, vol. 6, pp. 33789-33795, 2018. doi: 10.1109/ACCESS.2018.2841987
  • Alhakami, W., ALharbi A., Bourouis S., Alroobaea R. and Bouguila N. (2019) "Network Anomaly Intrusion Detection Using a Nonparametric Bayesian Approach and Feature Selection," in IEEE Access, vol. 7, pp. 52181-52190, 2019. doi: 10.1109/ACCESS.2019.2912115
  • Artificial neural network. (2019, April 30). URL: https://en.wikipedia.org/wiki/ Artificial_neural_network.
  • Aziz, A. S. A., Hassanien, A. E. (2014). Multilayer Machine Learning-Based Intrusion Detection System. In Bio-inspiring Cyber Security and Cloud Services: Trends and Innovations (ss. 225-247). Springer, Berlin, Heidelberg.
  • Başar, M. D., Sarı, P., Kılıç, N., & Akan, A. (2016, May). Detection of chronic kidney disease by using Adaboost ensemble learning approach. In 2016 24th Signal Processing and Communication Application Conference (SIU) (ss. 773-776). IEEE.
  • Baykal, S. I., Bulut, D., Sahingoz, O. K. (2018, April). Comparing deep learning performance on bigdata by using CPUs and GPUs. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT) (ss. 1-6). IEEE.
  • CUP-99 Task Description. (n.d.). URL: https://kdd.ics.uci.edu/databases/kddcup99/task.html
  • Dhanabal, L., Shantharajah, S. P. (2015). A study on NSL-KDD dataset for intrusion detection system based on classification algorithms. International Journal of Advanced Research in Computer and Communication Engineering, 4(6), (ss. 446-452).
  • Dong, B., Wang, X. (2016). Comparison deep learning method to traditional methods using for network intrusion detection. In 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN) (ss. 581-585). IEEE.
  • Elsaeidy, A., Munasinghe, K. S., Sharma, D., & Jamalipour, A. (2019). Intrusion detection in smart cities using Restricted Boltzmann Machines. Journal of Network and Computer Applications.
  • Gavankar, S. S., Sawarkar, S. D. (2017). Eager decision tree. In 2017 2nd International Conference for Convergence in Technology (I2CT) (ss. 837-840). IEEE.
  • Karatas, G., Demir, O., Sahingoz, O. K. (2018). Deep Learning in Intrusion Detection Systems. In 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT) (ss. 113-116). IEEE.
  • Karatas, G., Sahingoz, O. K. (2018). Neural network based intrusion detection systems with different training functions. In 2018 6th International Symposium on Digital Forensic and Security (ISDFS) (ss. 1-6). IEEE.
  • Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K. R. (1999, August). Fisher discriminant analysis with kernels. In Neural networks for signal processing IX: Proceedings of the 1999 IEEE signal processing society workshop (cat. no. 98th8468) (ss. 41-48).
  • Radoglou-Grammatikis P. I. and Sarigiannidis P. G., "Securing the Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention Systems," in IEEE Access, vol. 7, pp. 46595-46620, 2019.doi: 10.1109/ACCESS.2019.2909807
  • Sahingoz, O. K., Buber, E., Demir, O., Diri, B. (2019). Machine learning based phishing detection from URLs. Expert Systems with Applications, 117, (ss. 345-357).
  • Salo F., Injadat M:, Nassif A. B., Shami A. and Essex A., "Data Mining Techniques in Intrusion Detection Systems: A Systematic Literature Review," in IEEE Access, vol. 6, pp. 56046-56058, 2018.doi: 10.1109/ACCESS.2018.2872784
  • Taneja, S., Gupta, C., Aggarwal, S., Jindal, V. (2015, March). MFZ-KNN—A modified fuzzy based K nearest neighbor algorithm. In 2015 International Conference on Cognitive Computing and Information Processing (CCIP) (ss. 1-5). IEEE.
  • Ulgen, &. (2017, November 12). Makine Öğrenimi Bölüm-5 (Karar Ağaçları). URL: https://medium.com/@k.ulgen90/ makine-öğrenimi-bölüm-5-karar-ağaçları-c90bd7593010
  • Ulgen, &. (2017, October 16). Makine Öğrenimi Bölüm-2 (k-En Yakın Komşuluk). URL: https://medium.com/@k.ulgen90/makine-öğrenimi-bölüm-2-6d6d120a18e1
  • Zhang Y., Li P. and Wang X. , "Intrusion Detection for IoT Based on Improved Genetic Algorithm and Deep Belief Network," in IEEE Access, vol. 7, pp. 31711-31722, 2019. doi: 10.1109/ACCESS.2019.2903723