Grafen Temelli İletken Polimer-Nanokompozit Elektrodunun Sentezi, Elektrokimyasal ve Optik Özelliklerinin İncelenmesi

Üstün fizikokimyasal özelliklere sahip grafen türevi nanomateryaller son yıllarda farklı araştırma alanlarında kullanılmaktadır. Bu çalışmada grafen temelli nanomateryal olan indirgenmiş grafen oksit (rGO) şeffaf iletken cam yüzeyine modifiye edilmiştir. Bu kaliteli, modifiye elektrot üzerinde sentezi başarıyla tamamlanmış ve karakterize edilmiş olan tiyenil pirol türevi elektroaktif monomer dönüşümlü voltametri yardımıyla polimerleştirilerek PSN/rGO-ITO adı verilen nanokompozit elektrot sentezlenmiştir. Burada rGO, PSN polimer yapısıyla mükemmel etkileşim gösterip, elektron transferini kolaylaştırarak kompozit filmin elektrokimyasal ve optik özelliklerini geliştirmiştir. Örneğin, PSN/rGO-ITO kompoziti yalnızca PSN polimerinin kullanıldığı yüzeye göre elektrokimyasal kararlılığı döngü sayısı bakımından 5 kat artırmıştır. Yine band boşluğu enerjisi (Eg) değerini 2.01 eV’dan 1.91eV' a düşürerek iletkenliği artırmıştır. Bu kompozit film, iletken polimerlerin kullanılabileceği tüm alanlarda özellik geliştiren materyal olarak kullanılabilecek alternatif bir ürünü oluşturmaktadır.

Synthesis of Graphene Based Conducting-Polymer Nanocomposite Electrode and Investigation of Electrochemical and Optical Properties

Graphene derivative nanomaterials with superior physicochemical properties have been used in different research areas in recent years. In this work, graphene-based reduced graphene oxide (rGO) is modified to the transparent conductive glass surface. On this quality modified electrode, the nanocomposite electrode is synthesized by polymerizing (using cycling voltammetry) the thienyl pyrrole derivate electroactive monomer which has been successfully synthesized and characterized (called by PSN/rGO-ITO ). Here, the graphene based nanomaterial has excellent interaction with the polymer structure and has improved electrochemical and optical properties of composite film by facilitating electron transfer. For example, the PSN/rGO-ITO composite film has increased the electrochemical stability by 5 times in terms of the number of cycles when compared to bare PSN surface. Besides, reducing the band gap energy (Eg) value from 2.01 eV to 1.91 eV increased the conductivity. This composite film forms an alternative product that can be used as a material for improving properties in all areas where conductive polymers can be used.

___

  • Abid, A.D., Anderson, D.S., Das, G.K., Van Winkle, L.S., Kennedy, I.M. 2013. Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation. Particle and Fibre Toxicology, 10, 1. doi:10.1186/1743-8977-10-1.
  • Ayranci, R., Ak, M. 2016. Synthesis of a novel, fluorescent, electroactive and metal ion sensitive thienylpyrrole derivate. New Journal Chemistry, 40, 8053–8059. doi:10.1039/c6nj02006b.
  • Ayranci, R., Baskaya, G., Guzel, M., Bozkurt, S., Ak, M., Savk, A., Sen, F. 2017. Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A comparative investigation. Nano-Structures & Nano-Objects 11, 13–19. doi:10.1016/j.nanoso.2017.05.008.
  • Ayranci, R., Soganci, T., Guzel, M., Demirkol, D.O., Ak, M., Timur, S. 2015. Comparative investigation of spectroelectrochemical and biosensor application of two isomeric thienylpyrrole derivatives. RSC Advances. 5, 52543–52549. doi:10.1039/C5RA07247F.
  • Bobacka, J., Ivaska, A. 2003. Chemical Sensors Based on Conducting Polymers. Materials and Applications. 15, 173-187. doi:10.1002/9783527630592.ch9.
  • Campbell, F.C. 2010. Product Performance Evulation with CAD/CAE. Structural Analysis. 43-119. doi:10.1016/B978-0-12-398460-9.00002-0.
  • Chen, L., McBranch, D.W., Wang, H.L., Helgeson, R., Wudl, F., Whitten, D.G. 1999. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proceedings of the National Academy of Sciences of the United States of America, 96, 12287–12292. doi:10.1073/pnas.96.22.12287.
  • Choi, Y.J., Kim, E., Han, J.W., Kim, J.H., Gurunathan, S. 2016. A novel biomolecule-mediated reduction of graphene oxide: A multifunctional anti-cancer agent. Molecules 21. doi:10.3390/molecules21030375.
  • Dejeu, J., Taouil, A.E., Rougeot, P., Lakard, S., Lallemand, F., Lakard, B. 2010. Morphological and adhesive properties of polypyrrole films synthesized by sonoelectrochemical technique. Synthetic Metals. 160, 2540–2545. doi:10.1016/j.synthmet.2010.10.002.
  • Dong, P., Zhu, Y., Zhang, J., Peng, C., Yan, Z., Li, L., Peng, Z., Ruan, G., Xiao, W., Lin, H., Tour, J.M., Lou, J. 2014. Graphene on Metal Grids as the Transparent Conductive Material for Dye Sensitized Solar Cell. The Journal of Physical Chemistry C. 118, 25863–25868. doi:10.1021/jp505735j.
  • Eda, G., Fanchini, G., Chhowalla, M. 2008. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology 3, 270–274. doi:10.1038/nnano.2008.83.
  • Eda, G., Lin, Y.Y., Miller, S., Chen, C.W., Su, W.F., Chhowalla, M. 2008b. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Applied Physics Letters. 92, 233-305. doi:10.1063/1.2937846.
  • Geffroy, B., le Roy, P., Prat, C. 2006. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polymer International 55, 572-582. doi:10.1002/pi.1974.
  • Geim, A.K., Novoselov, K.S. 2007. The rise of graphene. Nature Materials. 6, 183–191. doi:10.1038/nmat1849.
  • Guo, D.J., Li, H.L. 2005. Highly dispersed Ag nanoparticles on functional MWNT surfaces for methanol oxidation in alkaline solution. Carbon, 43, 1259-1264.doi:10.1016/j.carbon.2004.12.021.
  • Han, P., Yue, Y., Liu, Z., Xu, W., Zhang, L., Xu, H., Dong, S., Cui, G., Sum, E., Rychcik, M., Skyllas-kazacos, M., Sum, E., Skyllas-Kazacos, M., Skyllas-Kazacos, M., Rychcik, M., Robins, R.G., Fane, A.G., Green, M.A., Yue, L., Li, W.S., Sun, F.Q., Zhao, L.Z., Xing, L.D., Chen, D.Y., Wang, S.J., Xiao, M., Meng, Y.Z., Li, X.F., Zhang, H.M., Mai, Z.S., Zhang, H.Z., Vankelecom, I., Zhang, H.Z., Zhang, H.M., Li, X.F., Mai, Z.S., Zhang, J.H., Gattrell, M., Qian, J., Stewart, C., Graham, P., MacDougall, B., Gattrell, M., Park, J., MacDougall, B., Apte, J., McCarthy, S., Wu, C.W., Zhong, S., Padeste, C., Kazacos, M., Skyllas-Kazacos, M., Kaneko, H., Nozaki, K., Wada, Y., Aoki, T., Negishi, A., Kamimoto, M., Sun, B., Skyllas-Kazakos, M., Fabjan, C., Garche, J., Harrer, B., Jörissen, L., Kolbeck, C., Philippi, F., Tomazic, G., Wagner, F., Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., Kim, F., Cote, L.J., Huang, J.X., Zhou, X.F., Liu, Z.P., Wassei, J.K., Cha, K.C., Tung, V.C., Yang, Y., Kaner, R.B., Becerril, H.A., Mao, J., Liu, Z.F., Stoltenberg, R.M., Bao, Z.N., Chen, Y.S., Xu, Y.X., Sheng, K.X., Li, C., Shi, G.Q., Dong, X.C., Su, C.Y., Zhang, W.J., Zhao, J.W., Ling, Q.D., Huang, W., Chen, P., Li, L.J., Pumera, M., Sun, Y.Q., Wu, Q., Shi, G.Q., Aboutalebi, S.H., Chidembo, A.T., Salari, M., Konstantinov, K., Wexler, D., Liuac, H.K., Doua, S.X., Han, P.X., Wang, H.B., Liu, Z.H., Chen, X., Ma, W., Yao, J.H., Zhu, Y.W., Cui, G.L., Hummers, W.S., Offeman, R.E., Xu, Y.X., Bai, H., Lu, G.W., Li, C., Shi, G.Q., Chen, H.Y., Wang, N., Di, J.C., Zhao, Y., Song, Y.L., Jiang, L., Geng, Y., Wang, S.J., Kim, J.K., Tang, Y., Gou, J.H., Byon, H.R., Lee, S.W., Chen, S., Hammond, P.T., Shao-Horn, Y., Kim, Y.K., Min, D.H., Cai, D.Y., Song, M., Xu, C.X., Liu, J.C., Bai, H.W., Wang, Y.J., Liu, Z.Y., Zhang, X.W., Sun, D.D., Shinde, D.B., Debgupta, J., Kushwaha, A., Aslam, M., Pillai, V.K., Ovejero, G., Sotelo, J.L., Romero, M.D., Rodríguez, A., Ocaña, M.A., Rodríguez, G., García, J., Shen, J.F., Li, N., Shi, M., Hu, Y.Z., Ye, M.X., Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., Car, R., Shen, J.F., Hu, Y.Z., Shi, M., Lu, X., Qin, C., Li, C., Ye, M.X., Sahoo, N.G., Cheng, H.K.F., Li, L., Chan, S.H., Judeh, Z., Zhao, J.H., Rao, C.N.R., Biswas, K., Subrahmanyama, K.S., Govindaraj, A., Seredych, M., Tamashausky, A. V., Bandosz, T.J., Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E., Chhowalla, M., Xu, Y.J., Liu, X., Cui, G.L., Zhu, B., Weinberg, G., Schlögl, R., Maier, J., Su, D.S., Huang, H., Liu, X.M., Zhang, X.Y., Liu, W.L., Su, X.G., Zhang, Z.Q., Haddadi-Asl, V., Kazacos, M., Skyllas-Kazacos, M., Xue, F.Q., Wang, Y.L., Wang, W.H., Wang, X.D., Sun, B., Skyllas-Kazacos, M., Sun, B., Skyllas-Kazacos, M., Lv, R.T., Cui, T.X., Jun, M.S., Zhang, Q., Cao, A.Y., Su, D.S., Zhang, Z.J., Yoon, S.H., Miyawaki, J., Mochida, I., Kang, F.Y., Wang, W.H., Wang, X.D., Meyers, J.P., Doyle, M., Darling, R.M., Newman, J., Albery, W.J., Mount, A.R., Xiao, P., Gao, W.Y., Qiu, X.P., Zhu, W.T., Sun, J., Chen, L.Q., Yang, S.B., Feng, X.L., Zhi, L.J., Cao, Q., Maier, J., Müllen, K. 2011. Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2+ redox couples for vanadium redox flow batteries. Energy & Environmental Science 4, 4710. doi:10.1039/c1ee01776d.
  • Irvin, D.J., Reynolds, J.R. 1998. Tuning the band gap of easily oxidized bis(2-thienyl)- and bis(2-(3,4-ethylenedioxythiophene))-phenylene polymers. Polymers for Advanced Technologies. 9, 260–265.
  • Jagur-Grodzinski, J. 2002. Electronically conductive polymers. Polymers for Advanced Technologies 13, 615–625. doi:10.1002/pat.285.
  • Kim, H., Kobayashi, S., AbdurRahim, M.A., Zhang, M.J., Khusainova, A., Hillmyer, M.A., Abdala, A.A., Macosko, C.W. 2011. Graphene/polyethylene nanocomposites: effect of polyethylene functionalization and blending methods. Polymer. 52, 1837–1846.
  • Mondal, S., Chakraborty, P., Bairi, P., Chatterjee, D.P., Nandi, A.K. 2015. Light induced E–Z isomerization in a multi-responsive organogel: elucidation from 1 H NMR spectroscopy. Chemical Communications. 51, 10680–10683. doi:10.1039/C5CC03609G.
  • Park, S., Ruoff, R.S. 2009. Chemical methods for the production of graphenes. Nature Nanotechnolgy. 4, 217–224. doi:10.1038/nnano.2009.58.
  • Saxena, A.P., Deepa, M., Joshi, A.G., Bhandari, S., Srivastava, A.K. 2011. Poly ( 3 , 4-ethylenedioxythiophene ) -Ionic Liquid Functionalized Graphene / Reduced Graphene Oxide Nanostructures : Improved Conduction and Electrochromism. Applied Materials and Interfaces. 3(4), 1115–1126. doi: 10.1021/am101255a.
  • Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y., Lee, Y.H. 2009. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials 19, 1987–1992. doi:10.1002/adfm.200900167.
  • Soganci, T., Soyleyici, H.C., Ak, M. 2016. A soluble and fluorescent new type thienylpyrrole based conjugated polymer: optical, electrical and electrochemical properties. Physical Chemistry Chemical Physics. 18, 14401–14407. doi:10.1039/C6CP02214F.
  • Tang, L., Wang, Y., Li, Y., Feng, H., Lu, J., Li, J. 2009. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials. 19, 2782–2789. doi:10.1002/adfm.200900377.
  • Wang, J. 2011. “Graphene in Electroanalysis.” Electroanalysis 23, 801. doi:10.1002/elan.201190006.
  • Wu, J., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., Peumans, P. 2008. Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters. 92. doi:10.1063/1.2924771.
  • Zhang, H., Feng, P.X. 2010. Fabrication and characterization of few-layer graphene. Carbon 48, 359–364. doi:10.1016/j.carbon.2009.09.037.