Düşük Prandtl Sayısına Sahip Akışkanın Doğal Konveksiyon Hareketinin İncelenmesi

Yapmış olduğumuz çalışmada, kapalı dikey silindirik deney sistemi içerisindeki akışkanın alt kısmı ısıtıcı levha ile ısıtılmaktadır. Deney silindiri ısı iletim katsayısı çok düşük olan pleksiglas malzemedir. Deney kabına eklenen ısıtıcı levha sayesinde akışkanın alt tarafı sabit sıcaklıkta tutulabilmektedir. Alt yüzeyden ısıtılan bu deney sistemi üst kısımdan bir soğutucu piston ile soğutulmaktadır. Kullanılan ısıtıcı levha Th değerimizi oluştururken, üst kısımda yer alan soğutucu piston Tc değerimizi oluşturmaktadır. Bu ısıtma neticesinde oluşan doğal konveksiyon hareketleri Fluent programı ile iki boyutlu olarak incelenmiş ve karşılaştırılmıştır. Araştırmamızda akışkan olarak düşük Prandtl sayısına sahip sıvı metal galium akışkanı kullanılmıştır. Oluşturulan doğal konveksiyon hareketi ile birlikte eşsıcaklık eğrileri ve akım çizgileri, sabit yer çekimi vektörü altında hesaplatılmış ve çizdirilmiştir. Th sıcaklığı ile Tc sıcaklığı arasındaki sıcaklık farkının akışkanın doğal konveksiyon hareketine olan etkisi incelenmiştir. Bu konfigürasyonda doğal konveksiyon etkisi sonucu oluşan hız vektörlerinin büyüklükleri akışkanın ısıtıcı duvara yakın olan bölgelerinde daha hızlı iken soğutucu duvara yakın bölgelerinde ise daha yavaş olarak hareket ettiği gözlemlenmiştir.

___

  • Referans1: Al-Mudhaf, A., Chamkha, A., J., 2004. Natural Convection of Liquid Metals in an Inclined Enclosure in the Presence of a Magnetic Field International Journal of Fluid Mechanics Research, 31(3), 221-243
  • Referans2: Baumgartl, J., Budweiser, W., Müller, G., Neumann, G., 1989. Studies of Buoyancy Driven Convection in a Vertical Cylinder With Parabolic Temperature Profile. J. Crystal Growth, 97, 9.
  • Referans3: Catton, I., 1978. Natural Convection in Enclosures. Proceedings of The Sixty International Heat Transfer Conference, Toronto, Hemisphere Publishing Corp., Washington, DC, 6, 13
  • Referans4: Crespo, D., A., E., Bontoux, P., Sani, R., L., Hardin, G., Extremet, G., P., 1988. Steady and Oscillatory Convection in Vertical Cylinders Heated From Below. Numerical Simulation of Asymmetric Flow Regimes. Adv. Space Res. 8(12), 281
  • Referans5: Cong Qi , Xin Cui , Yibo Liu , Zhongbo Yang , Chao Huang, 2015. Natural Convection Heat Transfer of Liquid Metal Gallium Nanofluids in a Rectangular Enclosure. https://doi.org/10.1002/htj.21190
  • Referans6: Derebail, R., Koster, J., N., 1996. Numerical Simulation of Natural Convection of Gallium in a Narrow Gap. University of Colorado, Department of Aerospace Engineering Sciences, Boulder, CO 80309-0429
  • Referans7: Fontaine, J., P., Crespo, D., A., E., Randriamampianina, A., Extremet, G., P.,Bontoux, P., 1988. Convective Motions in Liquid Metals for Material Processings. Numerical Simulation of Oscillation Regimes and The Effect of Rotation. Adv. Space Res. 8(12), 279.
  • Referans8: Fritsch, A., Flesch, J., Geza, V., Singer, C., Uhlig, R., Hoffschmidt, B., 2015. Conceptual Study of Central Receiver Systems with Liquid Metals as Efficient Heat Transfer Fluids. Energy Procedia, 69, 644-653.
  • Referans9: Kamatoni, Y., Weng, F., B., Ostrach, S., Platt, J., 1994. Oscillatory Natural Convection of a Liquid Metal in Circular Cylinders. Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland, Ohio, 44135, 116-632.
  • Referans10: Kaneda, M., Tagawa, T., Ozoe, H., 2005. Natural Convection of Liquid Metal Under a Uniform Magnetic Field with an Electric Current Supplied From Outside. Experimental Thermal and Fluid Science, 30, 243.
  • Referans11: Khalilov, R., Kolesnichenko, I., Teimurazov, A., Mamykin, A., and Frick, P., 2017. Natural convection in a Liquid Metal Locally Heated From Above. Materials Science and Engineering, 208, conference 1.
  • Referans12: Kirchartz, K., R., Oertel, J., H., 1998. Three-Dimensional Thermal Cellular Convection in Rectangular Boxes. Journal of Fluid Mechanics, 192, 249.
  • Referans13: Milorad B., D., 2019. Natural And Mixed Convection In Rectangular Enclosures And Channels Containing Liquid Metals And Partition Walls. American Society of Thermal and Fluids Engineering, DOI: 10.1615/TFEC2019.fnd.028098, 1103-1106.
  • Referans14: Müller, G., Neumann, G., Weber, W., 1984. Natural Convection in Vertical Bridgeman Configurations. J. Crystal Growth, 70, 78.
  • Referans15: Müller, G., Neumann, G., Matz, H., 1987. A Two Rayleigh Number Model of Buoyancy-Driven Convection in Vertical Melt Growth Configurations. J. Crystal Growth, 84, 36
  • Referans16: Nasrin, R., Alim, M., A., Chamkha, A., 2012. Buoyancy-Driven Heat Transfer of Water-Al2O3 Nanofluid in a Closed Chamber: Effects of Solid Volume Fraction, Prandtl Number and Aspect Ratio. 55(25–26), 7355-7365
  • Referans17: Neumann, G., 1990. Three-Dimensional Numerical Simulation of Buoyancy - Driven Convection in Vertical Cylinders Heated From Below. Journal of Fluid Mechanics, 214, 559.
  • Referans18: Obayedullah, M., Chowdhury, M,. M., K., 2013. MHD Natural Convection in a Rectangular Cavity Having Internal Energy Sources with Non-Uniformly Heated Bottom Wall. Procedia Engineering, 56, 76-81.
  • Referans19: Ostrach, S., 1972. Natural Convection in Enclosures. Advances in Heat Transfer, Academic Press, New York, 8, 161.
  • Referans20: Pesso, T., Piva, S., 2009. Laminar Natural Convection in a Square Cavity: Low Prandtl Numbers and Large Density Differences. International Journal of Heat and Mass Transfer, 52, 1036-1043.
  • Referans21: Platt, J. A., Ostrach, S., Kamotani, Y., 1991. Oscillatory Natural Convection of aLiquid Metal Enclosed in a Right Circular Cylinder Heated From Below. Department of Mechanical and Aerospace Engineering Case Western Reserve University Cleveland, Ohio, 44106, 1-3.
  • Referans22: Sathiyamoorthy, M., Chamkha, A., 2010. Effect of Magnetic Field on Natural Convection Flow in a Liquid Gallium Filled Square Cavity for Linearly Heated Side Wall(s). International Journal of Thermal Sciences, 49, 1856-1857.
  • Referans23: Selver, R., Kamotoni, Y., Ostrach, S., 1998. Natural Convection of a Liquid Metal in Vertical Circular Cylinders Heated Locally From Side. Journal of Heat Transfer, 120, 108.
  • Referans24:Smirnov, S. I., Smirnov, E. M., Smirnovsky, A. A., 2017. Endwall Heat Transfer Effects on the Turbulent Mercury Convection in a Rotating Cylinder. St. Petersburg Polytechnical University Journal: Physics and Mathematics, 3, 83-84.
  • Referans25: Solmaz, S., Çopur, K., 2004. Termokapileri Konveksiyona Bağlı Olarak Silindir Kap içerisindeki Akışkanın Rejim Halinde ve Osilasyonlu Haldeki Sıcaklık ve Hız Dağılımlarının Deneysel ve Teorik İncelemesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Ana bilim dalı, Yüksek Lisans Tezi. Isparta, 84.
  • Referans26: Teimouri, Hamid | Afrand, Masoud | Sina, Nima | Karimipour, Arash | Isfahani, Amir Homayoon Meghdadi, 2015. Natural Convection of Liquid Metal in a Horizontal Cylindrical Annulus Under Radial Magnetic Field. International Journal of Applied Electromagnetics and Mechanics, 49(4), 453-461.
  • Referans27:Xu, B., Li, B., Q., 2005. Hot-film Measurement of Temperature Gradient Induced Natural Convection in Liquid Gallium. Experimental Thermal and Fluid Science, 29, 697-698.
  • Referans28: Zennouhi, H., Benomar, W., Kousksou, T., Msaad, A., A., Allouhi, A., Mahdaoui, M., Rhafiki, T. E., 2017. Effect of Inclination Angle on the Melting Process of Phase Change Material. Case Studies in Thermal Engineering, 9, 47
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü