Sonlu Elemanlar Metodu Kullanarak Farklı Yol Üstyapı Tiplerinin Oturmaya Etkisinin İncelenmesi

Bu çalışmada, farklı yol tiplerinin oturma davranışı üzerine etkisi sonlu elemanlar yöntemi kullanılarak incelenmiştir. Analizlerde aynı temel ve alt temel tabakaları üstüne inşa edilen farklı yol kaplama cinsleri için analiz modelleri oluşturulmuştur. Maksimum büyüklükleri aynı değerde olan statik ve dinamik yüklerde oluşabilecek oturma değerleri için iki boyutlu hesaplamalar yapılmıştır. Farklı tekerlek aralıkları (15, 30, 60 ve 120cm) için statik ve dinamik yükler altında oluşan asfalt ve beton yol tiplerindeki oturma davranışları incelenmiştir. İlk olarak asfalt yol kaplamasında analizler yürütülmüştür. Daha sonra ise beton yol ve yarısı beton yol olup kaplamanın diğer üst yarısının asfalt kaplama olma durumları için analiz sonuçları karşılaştırılmış ve farklılıklar yorumlanmıştır. Böylece tekerlek aralığı, yükleme tipi ve kaplama cinslerinin kara yolunda meydana getirebileceği oturma davranışları nümerik bir çalışma ile değerlendirilmiştir.

Investigation of The Effect of Different Pavement Types on the Settlement Using Finite Element Method

In this study, the effect of different road types on sitting behavior was investigated by using finite element method. Analysis models were created for different types of road pavements built on the same base and subbase layers. Two-dimensional calculations were made for the settlement values that can occur in static and dynamic loads with the same maximum values. Settlement behavior of asphalt and concrete road types under static and dynamic loads for different wheel distances (15, 30, 60 and 120cm) were investigated. First, analyzes were carried out on asphalt pavement. Then, the results of the analysis were compared and the differences were interpreted for the case of the asphalt pavement of the other half of the pavement. Thus, both the wheel spacing, the type of loading and the type of pavement that can occur in the road behavior of the sitting behavior was evaluated with a numerical study.

___

  • Abu-Farsakh, M., Gub, J., Voyiadjis, G.Z. and Chen, Q. (2014). Mechanistic–empirical analysis of the results of finite element analysis on flexible pavement with geogrid base reinforcement, International Journal of Pavement Engineering, 15, 9: 786–798.
  • Abu-Farsakh, M., Hanandeh, S., Mohammad, L., Chen, Q. (2016). Performance of geosynthetic reinforced/stabilized paved roads built over soft soil under cyclic plate loads. Geotextiles and Geomembranes, 44, 845-853.
  • Acharya, R., Han, J., Brennan, J.J., Parsons, R.L., and Khatri, D.K. (2016). ‘‘Structural response of a low-fill box culvert under static and traffic loading’’, Journal of Performance of Constructed Facilities, 30 (1): 04014184.
  • Al-Hadidy, A.I., Yi-qiu, T. (2009a). ‘‘Mechanistic analysis of ST and SBSmodified flexible pavements’’, Construction and Building Materials, 23: 2941–2950.
  • Al-Hadidy, A.I., Yi-qiu, T. (2009b). ‘‘Mechanistic approach for polypropylenemodified flexible pavements’’, Materials and Design, 30, 1133–1140.
  • Al-Hadidy, A.I., Yi-qiu, T. (2009c). ‘‘Effect of polyethylene on life of flexible pavements’’, Construction and Building Materials, 23: 1456–1464.
  • Bandeira, A.A., Fortes, R.M., Merighi, J.V. (2009). ‘‘A study of the Hot-Mix Asphalt layer thickness reduction when applied over lateritic soils cement base in airfield’’, Exacta, São Paulo, 7 (1), 121-131.
  • Bing, H., Chai, G.W., Staden, R.V., Guan, H. (2014). ‘‘Evaluation of doweled joints in concrete pavements using three-dimensional finite element analysis, design’’, Analysis, and Asphalt Material Characterization for Road and Airfield Pavements: 115-129.
  • Chandra, S., Viladkar, M.N., Nagrale, P.P. (2008). ‘‘Mechanistic approach for fiberreinforced flexible pavements’’, Journal of Transportation Engineering, 134 (1): 15-23.
  • Chun, S., Kim, K., Greene, J., Choubane, B. (2015). ‘‘Evaluation of interlayer bonding condition on structural response characteristics of asphalt pavement using finite element analysis and full-scale field tests’’, Construction and Building Materials, 96: 307–318.
  • Djellali, A., Houam, A., Saghafi, B., Hamdane, A., Benghazi, Z. (2017). ‘‘Static analysis of flexible pavements over expansive soils., International Journal of Civil Engineering, 15,:391–400.
  • Faheem, H., and Hassan, A.M. (2014). ‘‘2D Plaxis finite element modeling of asphaltconcrete pavement reinforced with geogrid’’, Journal of Engineering Sciences Assiut University Faculty of Engineering, 42 (6): 1336 – 1348.
  • Helwany, S., Dyer, J., Leidy, J. (1998). ‘‘Finite element analyses of flexible pavements’’, Journal of Transportation Engineering, 124 (5): 491-499.
  • Howard, I.L. and Kimberly, A.W. (2009). ‘‘Finite-element modeling of İnstrumented flexible pavements under stationary transient loading’’, Journal of Transportation Engineering, ASCE, 135(2): 53-61.
  • Imaninasab, R., Bakhshi, B., Shirini, B. (2016). ‘‘Rutting performance of rubberized porous asphalt using Finite Element Method (FEM)’’, Construction and Building Materials, 106: 382–391.
  • Kadela, M. (2016). ‘‘Model of multiple-layer pavement structure-subsoil system’’, Bulletin of The Polish Academy of Sciences Technical Sciences, 64 (4).
  • Khavassefat, P., Jelagin, D., Birgisson, B. (2015). ‘‘Dynamic response of flexible pavements at vehicle–road interaction’’, Road Materials and Pavement Design, 16 (2): 256– 276.
  • Kim, K., Tia, M. and Greene, J. (2016). Evaluation of structural behavior of precast prestressed concrete pavement with finite element analysis, Transportation Research Record: 84–93.
  • Lin, X., Zhang, Y.X., Hazell, P.J. (2014). ‘‘Modelling the response of reinforced concrete panels under blast loading’’, Materials and Design, 56: 620–628.
  • Ling, H.I. and Liu, Z. (2001). ‘‘Performance of geosynthetic-reinforced asphalt pavements’’, Journal of Geotechnical and Geoenvironmental Engineering, 127 (2): 177- 184.
  • Ling, H.I. and Liu, H. (2003). ‘‘Finite element studies of asphalt concrete pavement reinforced with geogrid’’, Journal of Engineering Mechanics, 129 (7): 801-811.
  • Liu, P., Wang, D., Oeser, M. (2017). ‘‘Application of semi-analytical finite element method to analyze asphalt pavement response under heavy traffic loads’’, Jouurnal of Traffic and Transportation Engineering, 4 (2): 206-214.
  • Mokhtari, A. and Nejad, F.M. (2012). ‘‘Mechanistic approach for fiber and polymer modified SMA mixtures’’, Construction And Building Materials, 36:381–390.
  • Mulungye, R.M., Owende, P.M.O., Mellon, K. (2007). ‘‘Finite element modelling of flexible pavements on soft soil subgrades’’. Materials and Design, 28: 739–756.
  • Ranadive, M.S. and Tapase, A.B. (2013). ‘‘Investigation of behavioral aspects offlexible pavement under various conditions by finite element method’’, Constitutive Modeling of Geomaterials, SpringerVerlag,Berlin: 765–770.
  • Rooholamini, H.,. Hassani, A., Aliha, M.R.M. (2018). ‘‘Evaluating the effect of macrosynthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology’’, Construction and Building Materials, 159: 517–529.
  • Shafabakhsh, G.A., Family, A., and Abad, B.P.H. (2014). ‘‘Numerical analysis of concrete block pavements and comparison of its settlement with asphalt concrete pavements using finite element method’’, Engineering Journal, 18 (4): 39-51.
  • Tarefder, R.A., Ahmed, M.U., Islam, M.R., and Rahman, M.T. (2014). ‘‘Finite element model of pavement response under load considering cross-anisotropy in unbound layers’’. Advances in Civil Engineering Materials, ASTM, 3 (1): 57-75.
  • Zhang, J., Zhu, C., Li, X., Pei, J., Chen, J. (2017). ‘‘Characterizing the three-stage rutting behavior of asphalt pavement with semi-rigid base by using UMAT in ABAQUS’’, Construction and Building Materials, 140: 496–507.
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü