75-77Br Radyoizotoplarının Üretim Tesir Kesiti Hesaplamalarında Bazı Seviye Yoğunluğu Modellerinin Etkilerinin İncelenmesi

Radyoizotopların kullanım alanları, gelişen teknoloji ve bilimsel ilerlemeler sayesinde giderek yaygınlaşmış ve çeşitlenmiştir. Radyoizotopların en yaygın kullanıldığı alan ise medikal teşhis ve tedavi uygulamalarıdır. Bu amaçlarla kullanılan pek çok radyoizotop arasında karakteristik özellikleri ve uygulamalardaki faydaları nedeniyle 75-77Br radyoizotopları da bulunmaktadır. Medikal uygulamalarda radyoizotopların sahip oldukları etki ve değer neticesinde bu izotopların üretim rotaları ile ilgili çalışmalar da literatüre katkı sağlayan çalışmalar olmuştur. Bu kapsamda, deneysel çalışmaların gerçekleştirilemediği durumlarda araştırmacılara bilgi verebilecek çeşitli parametrelerin elde edilmesinde farklı teorik modellerin kullanımı oldukça yaygındır. Kısaca bir reaksiyonun gerçekleşme ihtimali olarak açıklanabilecek tesir kesiti değeri de araştırmacılar için önemli bir parametredir ve bu değerin hesaplanmasında etkili faktörlerden biri de seviye yoğunluğu modelleridir. Tüm bunlar göz önüne alınarak bu çalışmada, 75-77Br radyoizotoplarının bazı (p,xn) reaksiyonları ile üretim tesir kesiti hesaplamalarında bazı seviye yoğunluğu modellerinin etkilerinin araştırılması amaçlanmıştır. Hesaplamalarda TALYS kodunun 1.9 sürümü kullanılmış ve elde edilen hesaplama sonuçları literatürde mevcut olan deneysel veriler ile karşılaştırılmıştır.

Investigation of the Effects of Some Level Density Models in the Production Cross-Section Calculations of 75-77Br Radioisotopes

The use of radioisotopes has become increasingly widespread and diversified thanks to advancing technology and scientific advances. The most widely used field of radioisotopes are medical diagnosis and treatment applications. Among the many radioisotopes used for these purposes, there are also 75-77Br radioisotopes due to their characteristics and benefits in applications. As a result of the impact and value of radioisotopes in medical applications, studies on the production routes of these isotopes have also contributed to the literature. In this context, the use of different theoretical models is quite common in obtaining various parameters that can inform researchers in cases where experimental studies cannot be carried out. The cross–section value, which can be explained briefly as the probability of a reaction, is an important parameter for the researchers and one of the effective factors in the calculation of this value is the level density models. Considering all these, in this study, it is aimed to investigate the effects of some level density models in the production cross–section calculations with some (p,xn) reactions of 75-77Br radioisotopes. In calculations, 1.9 version of TALYS code was used and the results obtained were compared with the experimental data available in the literature.

___

  • Aydin, A., Tel, E., Pekdoğan, H., Kaplan, A., 2012. “Nuclear Model Calculations on the Production of 125,123Xe and 133,131,129,128Ba Radioisotopes”. Physics of Atomic Nuclei, 75(3), 310-314.
  • Baba, H., 1970. “A Shell-Model Nuclear Level Density”, Nuclear Physics A, 159(2), 625- 641.
  • Berglund, M., Wiesser, M. E., 2011. “Isotopic compositions of the elements 2009 (IUPAC Technical Report)”. Pure and Applied Chemistry, 83(2), 397–410.
  • Canbula, B., 2017. “Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi,” Celal Bayar Üniversitesi Fen Bilimleri Dergisi,13 (2), 445-455.
  • Das, T., Pillai, M. R. A., 2013. “Options to Meet the Future Global Demand of Radionuclides for Radionuclide Therapy”. Nuclear Medicine and Biology, 40, 23-32.
  • Demir, B., Kaplan, A., Çapalı, V., Sarpün, İ. H., Aydın, A., Tel, E., 2015. “Production Cross–Section Calculations of Medical 32P, 117Sn, 153Sm and 186,188Re Radionuclides Used in Bone Pain Palliation Treatment”. Kerntechnik, 80 (1), 58-65.
  • Dilg, W., Schantl, W., Vonach, H., Uhl, M., 1973. “Level Density Parameters for the BackShifted Fermi Gas Model in the Mass Range 40
  • Fermi, E., 1926. “Zur Quantelung des Idealen Einatomigen Gases”. Zeitschrift für Physik, 36(11-12), 902-912.
  • Gilbert, A., Cameron, A. G. W., 1965. “A Composite Nuclear-Level Density Formula with Shell Corrections”. Canadian Journal of Physics, 43, 1446-1496.
  • Hassan, H. E., Qaim, S. M., Shubin, Yu., Azzam, A., Morsy, M., Coenena, H. H., 2004. “Experimental studies and nuclear model calculations on proton-induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br”, Applied Radiation and Isotopes, 60 (6), 899-909.
  • IAEA (International Energy Agency). “Cyclotron Produced Radionuclides: Principles and Practice”, Technical Reports Series No. 465, https://www-pub.iaea.org/MTCD/publications/PDF/trs465_web.pdf, Erişim Tarihi: 21.03.2020.
  • Ignatyuk, A. V., Istekov, K. K., Smirenkin, G. N., 1979. “The Role of Collective Effects in the Systematics of Nuclear Level Densities”. Yadernaja Fizika, 29(4), 875-883.
  • Ignatyuk, A. V., Smirenkin, G. N., Tishin, A. S., 1975. “Phenomenological Description of the Energy Dependence of the Level Density Parameter”, Yadernaja Fizika, 21(3), 485-490.
  • Koning, A. J., Hilaire, S., Goriely, S., 2008. “Global and Local Level Density Models”, Nuclear Physics A, 810(1-4), 13-76.
  • Koning, A., Hilaire, S., Goriely, S., 2017. TALYS–1.9 A Nuclear Reaction Program, User Manual, 1st ed. 21 December 2017.
  • Kovács, Z., Blessing, G., Qaim, S. M., Stöcklin, G., 1985. “Production of 75Br via the 76Se(p,2n)75Br reaction at a compact cyclotron”. The International Journal of Applied Radiation and Isotopes, 36 (8), 635-642.
  • Levkovski, V. N., 1991. “Act.Cs. by Protons and Alphas, Cross-Sections of Medium Mass Nuclide Activation (A=40–100) by Medium Energy Protons and Alpha-Particles (E=10–50 MeV)”, Inter-Vesi, Moscow.
  • Özdoğan, H., 2018. “181Ta(α,xn) Reaksiyonu Tesir Kesitlerinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 13 (2), 54-66 .
  • Özdoğan, H., 2019. “Theoretical Calculations of Production Cross–Sections for the 201Pb, 111In, 18F and 11C Radioisotopes at Proton İnduced Reactions”. Applied Radiation and Isotopes, 143, 1-5.
  • Rowland, D. J., McCarthy, T. J., Welch, M. J., 2002. “Radiobromine for Imaging and Therapy”, Handbook of Radiopharmaceuticals: Radiochemistry and Applications, John Wiley & Sons, Ltd, 441-465.
  • Sarpün, İ. H., Özdoğan, H., Taşdöven, K., Yalim, H.A., Kaplan, A., 2019. “Theoretical photoneutron cross-section calculations on Osmium isotopes by Talys and Empire codes”, Modern Physics Letters A, 34, 195210-195210.
  • Şekerci, M., Özdoğan, H., Kaplan A., 2019. “Investigation on the Different Production Routes of 67Ga Radioisotope by Using Different Level Density Models”. Moscow University Physics Bulletin, 74, 277-281.
  • Şekerci, M., Özdoğan, H., Kaplan, A., 2020. “An investigation of effects of level density models and gamma ray strength functions on cross-section calculations for the production of 90Y, 153Sm, 169Er, 177Lu and 186Re therapeutic radioisotopes via (n,g) reactions”. Radiochimica Acta, 108, 11-17.
  • Spahn, I., Steyn, G. F., Vermeulen, C., Kovács, Z., Szelecsényi, F., Coenen, H. H., Qaim, S. M., 2009. “New cross section measurements for production of the positron emitters 75Br and 76Br via intermediate energy proton induced reactions”, Radiochimica Acta, 97 (10), 535–541.
  • Spahn, I., Steyn, G. F., Vermeulen, C., Kovács, Z., Szelecsényi, F., Shehata, M. M., Spellerberg, S., Scholten, B., Coenen, H. H., Qaim, S. M., 2010. “New cross section measurements for the production of the Auger electron emitters 77Br and 80mBr”. Radiochimica Acta, 98 (12), 749–755.
  • Tel, E., Aydın, A., Kara, A., Kaplan, A., 2012. “Investigation of Ground State Features for Some Medical Radionuclides Using an effective Nuclear Force”. Kerntechnik, 77 (1) 50-55.
  • Tel, E., Aydin, E. G., Kaplan, A., Aydin, A., 2009. “New Calculations of Cyclotron Production Cross Sections of Some Positron Emitting Radioisotopes in Proton Induced Reactions”. Indian Journal of Physics, 83(2), 193-212.
  • Wilbur, D. S., Adam, M. J., Adam, 2019. “Radiobromine and radioiodine for medical applications”. Radiochimica Acta, 107 (9-11), 1033–1063.
  • WNA (World Nuclear Association). “Radioisotopes in Industry”, https://www.world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-industry.aspx, Erişim Tarihi: 21.03.2020.
  • Yeong, C. H., Cheng, M., Ng, K. H., 2014. “Therapeutic Radionuclides in Nuclear Medicine:Current and Future Prospects”. Journal of Zhejiang University Science B, 15, 845- 863.
  • Yiğit, M., 2018a. “Analysis of Cross Sections of (n,t) Nuclear Reaction using Different Empirical Formulae and Level Density Models”. Applied Radiation and Isotopes, 139, 151-158.
  • Yiğit, M., 2018b. “A Review of (n,p) and (n,a) Nuclear Cross Sections on Palladium Nuclei Using Different Level Density Models and Empirical Formulas”, Applied Radiation and Isotopes, 140, 355-362.
  • Zerkin, V. V., Pritychenko, B., 2018. “The Experimental Nuclear Reaction Data (EXFOR): Extended Computer Database and Web Retrieval System”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 888, 31-43.
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü