Türkiye’de Hayvancılık Kaynaklı Sera Gazı Üretimi ve Azaltma Yöntemleri

Hayvancılık işletmelerinde üretilip küresel ısınmaya etkisi olan başlıca sera gazları, metan (CH4) ve diazot monoksit (N2O)'tir. Türkiye'de toplam sera gazının %7'si tarım ve hayvancılık faaliyetlerinden kaynaklanmaktadır. Ruminantlar tarafından enterik fermantasyon sonucu üretilen CH4 gazı, alınan yem miktarı, yemin sindirilebilirlik oranı ve bileşimi gibi faktörler ile yakından ilgilidir. Bu gaz, çevre için bir tehlike unsuru olması dışında hayvanlarda verim düşüklüğüne sebep olması açısından da önemlidir. Hayvancılık işletmelerinde, CH4 gazı çıkışı, enerji kaybı ile ilişkilendirilmekte, CH4 gazı çıkışının azaltılması ile de dışarı salınmayan enerji işletmeye ürün, yani et ve süt olarak kazandırılabilmektedir. Bu sebeple başta enterik fermantasyon sonucu üretilen CH4 gazı olmakla birlikte sera gazları yayılımının azaltılması gerekmektedir. Dünyada yapılan çalışmalarda, hayvancılık işletmeleri tarafından üretilen sera gazlarının azaltılmasına katkıda bulunabilecek pek çok seçeneğin olduğu bildirilmektedir. Bu seçenekler arasında yemden yararlanma yeteneği yüksek hayvan ırklarının yetiştirilmesi, kaliteli ve enerjisi yüksek yemlerin kullanılması, rasyondaki kesif-kaba yem oranına dikkat edilmesi, rasyona yağ ve tanen gibi mitigant özelliği olan katkı maddelerinin ilavesi ve stratejik gübre yönetimi gibi yöntemler vardır. Ancak bu yöntemlerin işletme sahipleri tarafından kullanılabilmesi için verim artışı sağladığının kanıtlanması ve uygulama maliyetinin getirisinden düşük olması gerekmektedir. Dolayısıyla, Türkiye'de hayvancılık kaynaklı sera gazı yayılımını azaltıcı etkisi olabilecek yöntemler ile bu yöntemlerin verimlilik ve karlılık artışına etkisinin araştırılmasına yönelik çalışmaların yapılması için büyük bir potansiyel bulunmaktadır

The Greenhouse Gas Emissions Produced From Turkish Livestock Production and Mitigation Options

The main greenhouse gases produced from livestock production systems and contribute to the global warming are methane (CH4) and nitrous oxide (N2O). The agricultural activities in Turkey contribute to %7 of the total national greenhouse gas emissions. Methane emissions produced by ruminants via enteric fermentation are closely related with the amount of feed consumed; and digestibility and content of the feed. Apart from being hazardous for environment, CH4 emissions may also result in production losses from animal production systems. Methane emissions produced from livestock production systems are closely related to energy losses, and there is potential to re-gain some of the energy that is not lost through CH4 production in animal products such as meat and milk. Therefore, the greenhouse gas emissions, especially CH4 emissions produced from enteric fermentation should be mitigated. Research suggests that there are various mitigation options available to reduce the greenhouse gas emissisons from animal production systems. These include breeding animals that are more efficient converters of feed; using feeds with quality and high digestibility; considering a sufficient forageconcentrate ratio; the inclusion of mitigants such as fat and tannins into the ration; and strategic management of manure. However, it is important to note that in order for these options to be adapted by farmers and managers, their impacts on improved productivity should be proven. In addition, the cost of implementing a strategy should fall below its benefit. It can be concluded that there is a huge potential in Turkey to conduct studies on mitigation options of greenhouse gas emissions from animal production systems and their impacts on farm productivity and profitability

___

  • 1. Alford AR, Cacho OJ, Griffith GR, Hegarty RS. Jointly achieving profitability and environmental outcomes: methane abatement from genetic improvement in the Australian beef industry. Australian Agricultural and Resource Economics Society 50th Annual Conference. February, 8–10, 2006; Sydney-Australia.
  • 2. Alper D, Anbar A. Küresel ısınmanın dünya ekonomisine ve Türkiye ekonomisine etkileri. DEÜ Sos Bil Ens Der 2007; 9(4): 15–54.
  • 3. Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA. Nutritional management for enteric methane abatement: a review. Aus J Exp Ag 2008; 48(2): 21–7.
  • 4. Blaxter KL, Clapperton JL. Prediction of the amount of methane produced by ruminants. Brit J Nutr 1965; 19(1): 511–22.
  • 5. Brentrup F, Küsters J, Lammel J, Kuhlmann H. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int J Life Cyc Ass 2000; 5(6): 349–57.
  • 6. Brink C, Kroeze C, Klimont Z. Ammonia abatement and its impact on emissions of nitrous oxide and methane - part 2: application for Europe. Atm Env 2001; 35: 6313–25.
  • 7. Brink JC, Hordijk L, van Ierland EC, Kroeze C. Cost-effective N2O, CH4 and NH3 abatement in European agriculture: interrelations between global warming and acidification policies. Expert Workshop on Assessing the Ancillary Benefits and Costs of Greenhouse Gas Mitigation Strategies. March, 27–29, 2000; Washington, DC.
  • 8. Brouwer E. Report of sub-committee on constants and factors. Blaxter KL. ed. In: Proceedings of the Third Symposium on Energy Metabolism. London: Academic Press, 1965.
  • 9. Bryant RH, Walpot V, Dalley DE, Gibbs SJ, Edwards GR. Manipulating dietary N in perennial ryegrass pastures to reduce N losses in dairy cows in spring. Edwards GR, Bryant RH. eds. In: Meeting the Challenges for Pasture-based Dairying. Proceedings of the 4th Australasian Dairy Science Symposium. Christchurch: Caxton Press, 2010; pp. 97–100.
  • 10. Casey JW, Holden NM. Analysis of greenhouse gas emissions from the average Irish milk production system. Agr Sys 2005; 86: 97–114.
  • 11. Clark H, Eckard RJ. Mitigating methane in a systems context. Edwards GR, Bryant RH. eds. In: Meeting the challenges for pasture-based dairying, Proceedings of the 4th Australasian Dairy Science Symposium. Christchurch: Caxton Press, 2010; pp. 78–85.
  • 12. Czerkawski JW, Blaxter KL, Wainman FW. The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production. British J Nutr 1966; 20(2): 349–62.
  • 13. Çevre ve Şehircilik Bakanlığı. İklim Değişikliği Ulusal Eylem Planı 2011–2020. Ankara: Çevre ve Şehircilik Bakanlığı, Temmuz 2011.
  • 14. de Klein CAM, Monaghan RM, Ledgard SF, Shepherd M. A system’s perspective on the effectiveness of measures to mitigate the environmental impacts of nitrogen losses from pastoral dairy farming. Edwards GR, Bryant RH. eds. In: Meeting the Challenges for Pasture-based Dairying. Proceedings of the 4th Australasian Dairy Science Symposium. Christchurch: Caxton Press, 2010; pp. 14–28.
  • 15. de Klein C, Pinares-Patiño C, Waghorn G. Greenhouse gas emissions. McDowell R. ed. In: Environmental Impacts of Pasture-based Farming. Oxfordshire: CAB International, 2008
  • 16. Demir P, Cevger Y. Küresel ısınma ve hayvancılık sektörü. Vet Hek Dern Derg 2007; 78(1): 13–6.
  • 17. Department of Climate Change and Energy Efficiency (DCCEE). Agriculture emissions projections 2010. Canberra: Australian Government Deparment of Climate Change and Energy Efficiency, 2010.
  • 18. Dong H, Mangino J, McAllister TA, Hatfield JL, Johnson DE, Lassey KR, de Lima MA, Romanovskaya A, Bartram D, Gibb D, Martin JH. IPCC Guidelines for National Greenhouse Gas Inventories. Chapter 10. Emissions from livestock and manure management, 2006.
  • 19. Eckard RJ. Greenhouse gas emissions from agriculture - reduction options. Victoria: Victorian Department of Primary Industries and The University of Melbourne, 2010.
  • 20. Eckard RJ, Grainger C, de Klein CAM. Options for the abatement of methane and nitrous oxide from ruminant production: a review. Livestock Sci 2010; 130: 47–56.
  • 21. Eckard RJ, Hegarty R, Thomas G. 2008. Dairy, beef and sheep greenhouse accounting framework. Project no: UM10778. http://www. greenhouse.unimelb.edu.au/Tools.htm. Erişim tarihi: 22.02.2013.
  • 22. Ellis JL, Kebreab E, Odongo NE, Beauchemin K, McGinn S, Nkrumah JD, Moore SS, Christopherson R, Murdoch GK, McBride BW, Okine EK, France J. Modeling methane production from beef cattle using linear and nonlinear approaches. J Anim Sci 2009; 87(4): 1334–45.
  • 23. Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. Prediction of methane production from dairy and beef cattle. J Dairy Sci 2007; 90(7): 3456–66.
  • 24. Erisman JW, van Grinsven H, Leip A, Mosier A, Bleeker A. Nitrogen and biofuels; an overview of the current state of knowledge. Nutr Cyc Agroecosys 2010; 86: 211–23.
  • 25. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland, R. Changes in atmospheric constituents and in radiative forcing. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. eds. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York: Cambridge University Press, 2007.
  • 26. Görgülü M, Darcan N, Göncü S. Hayvancılık ve küresel ısınma. Beşinci Ulusal Hayvan Besleme Kongresi. 30 Eylül–3 Ekim, 2009; Çorlu-Türkiye.
  • 27. Hendy J, Kerr S, Baisden T. Greenhouse gas emissions charges and credits on agricultural land: what can a model tell us? Motu working paper 06– 04. Wellington: Motu Economic and Public Policy Research, 2006.
  • 28. Hendy J, Kerr S. Spatial simulations of rural landuse change in New Zealand: the land use in rural New Zealand (LURNZ) mode. Motu manuscript. Wellington: Motu Economic and Public Policy Research, 2005.
  • 29. Hyde BP, Hawkins MJ, Fanning AF, Noonan D, Ryan M, O’ Toole P, Carton OT. Nitrous Oxide Emissions from a fertilized and grazed grassland in the south east of Ireland. Nutr Cyc Agroecosys 2006; 75: 187–200.
  • 30. Jarvis SC, Wilkins RJ, Pain BF. Opportunities for reducing the environmental impact of dairy farming managements: a systems approach. Grass Forage Sci 1996; 51: 21–31.
  • 31. Jensen BB. Methanogenesis in monogastric animals. Env Monit Ass Vol 1996; 42(1–2): 99–112.
  • 32. Kirchmann H, Esala M, Morken J, Ferm M, Bussink W, Gustavsson J, Jakobsson C. Ammonia emissions from agriculture, summary of the nordic seminar on ammonia emission, science and policy. Nutr Cyc Agroecosys 1998; 51: 1–3.
  • 33. Kroeze C, Bouwman AF, van der Hoek KW, Oonk J. Nitrous oxide (N2O) emission inventory and options for control in the Netherlands. Report no: 773001004. Bilthoven: National Institute of Public Health and Environmental Protection, 1994.
  • 34. Lennox JA, Andrew R, Forgie V. Price effects of an emissions trading scheme in New Zealand. The 107th EAAE Seminar, Modelling of Agricultural and Rural Development Policies, 29 January-1 February, 2008; Sevilla-Spain.
  • 35. McAllister TA, Newbold CJ. Redirecting rumen fermentation to reduce methanogenesis. Aus J Exp Agr 2008; 48(2): 7–13.
  • 36. McKenzie F. Getting the most out of nitrogen on grazed pastures. Best management practices for nitrogen on pastures. Using Nitrogen Confidently Seminar Proceedings. April, 1999; Victoria.
  • 37. Metcalf T, Kingwell R. Low emission farming systems: a whole-farm analysis of the potential impacts of greenhouse policy. The fifty third Australian Agricultural Resource Economics Society Conference. February, 11–3, 2009; CairnsAustralia.
  • 38. Moe PW, Tyrrell HF. Methane production in dairy cows. J Dairy Sci 1979; 62:1583–6.
  • 39. Monteny GJ, Bannink A, Chadwick D. Greenhouse gas abatement strategies for animal husbandry. Agr Ecosys Env 2006; 112: 163–70.
  • 40. Murray RM, Bryant AM, Leng RA. Rates of production of methane in the rumen and large intestine of sheep. British J Nutr 1976; 36(1): 1–14.
  • 41. Önder F, Akçasoy K. 2006 Methodology on greenhouse gas emissions used by Turkey. http:// www.unescap.org/STAT/envstat/stwes-07.pdf. Erişim tarihi: 20.02.2013.
  • 42. Özkan Ş. A systems approach evaluating alternative dairy feeding strategies in south-east Australia. PhD thesis, Melbourne School of Land and Environment, Agriculture and Food Systems, The University of Melbourne. Melbourne-Australia, 2012.
  • 43. Özkan Ş, Eckard R. 2012. Feedlot Greenhouse Accounting Framework (F-GAF).
  • 44. http://www.greenhouse.unimelb.edu.au/Tools.htm. Erişim tarihi: 22.02.2013.
  • 45. Özkan Ş, Farquharson B, Hill J, Malcolm B. Effect of a carbon price on farm profitability on rainfed dairy farms in south-west Victoria: a first-look. Aus Farm Bus Man J 2012; 9: 1–8.
  • 46. Sirohi S, Michaelowa M. Sufferer and cause: Indian livestock and climate change. Clim Change 2007; 85: 285–98.
  • 47. Şaylan L. Küresel iklim değişikliği ve Kyoto Protokolü, tarım sektörüne etkileri. Türkiye Ziraat Mühendisligi VII. Teknik Kongresi. Ocak, 11–5, 2010; Ankara.
  • 48. Türkes M. Sera gazı salımlarının azaltılması için sürdürülebilir teknolojik ve davranıssal seçenekler. V. Ulusal Çevre Mühendisligi Kongresi: Çevre Bilim ve Teknoloji Küresellesmenin Yansımaları, Bildiriler Kitabı, Ankara, 2003; 267–85.
  • 49. Türkiye İstatistik Kurumu. Ulusal seragazı emisyon envanteri raporu 1990–2009. Ankara: Türkiye İstatistik Kurumu Matbaası, 2011.
  • 50. Tyrell HF, Moe PW. Effect of intake on digestive efficiency. J Dairy Sci 1975; 58(8): 1151–63.
  • 51. United Nations Framework Convention on Climate Change (UNFCCC). Kyoto Protocol reference manual, on accounting of emissions and assigned amount. Germany: United Nations Framework Convention on Climate Change, 2008.
  • 52. U.S. Environmental Protection Agency. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2010. Washington, DC: U.S. Environmental Protection Agency, 2012.
  • 53. Waghorn GC, Clark DA. Greenhouse gas mitigation opportunities with immediate application to pastoral grazing for ruminants. Int Cong Ser 2006; 1293: 107–10.