Üç Boyutlu (3B) Polipropilen Havlı Halıların Eğme ve Basma Yükü Altında Karakterizasyonu

Üç boyutlu dokuma halı yapılarının yapısında hav ipliği olarak polipropilen lifler kullanılmıştır. Geliştirilen polipropilen halıların özellikleri hem eğilme hem de basma yükü altında incelenmiştir. Kuru ve ıslak polipropilen havlı halıların eğilme rijitliği ve eğim eğrilerinin, atkı sıklığından kaynaklanan dolaylı etkilerle birlikte hav yüksekliği ve hav yoğunluğu gibi faktörlerden etkilendiği bulunmuştur. Ayrıca, geleneksel kumaş testinde kuru halıların ortalama eğilme rijitliği değerlerinin, ıslak halıların ortalama eğilme rijitliği değerlerine kıyasla 2.06 kat, teknik kumaş testinde ise 6.10 kat daha fazla olduğu görülmüştür. Farklı polipropilen halılardaki kalınlık kaybı (%) hav yoğunluğu ile orantılı bir ilişki göstermiştir. Hav yoğunluğunun artması ile birlikte polipropilen lif düğümlerinin de artması ve her bir polipropilen lif düğümünün taşıyabileceği basma yükü kapasitesinin değişmesinden dolayı halıların kalınlıklarında azalma olduğu görülmüştür. Bu durum, birim alanda daha seyrek düğüm bulunan halılara göre daha yoğun düğümlü halılarda daha belirgin olarak gözlenmiştir. Çalışmadan elde edilen bulguların, özellikle karmaşık eğimli parça imalatında polipropilen halı tasarımcıları için faydalı olabileceği düşünülmektedir.

Characterizations of Polypropylene Pile Fiber in Three-Dimensional (3D) Carpet under Flexure and Static Loading

Polypropylene fiber was used as the pile yarn in the construction of three-dimensional woven carpet structures. The properties of the developed polypropylene carpets were investigated under both flexure and compression loading conditions. The flexure rigidity and curvature of dry and wet polypropylene pile fiber carpets were found to be influenced by factors such as pile height and pile density, with indirect effects observed on weft density. Furthermore, it was identified that the average dry bending rigidity of the carpet exceeded the average wet bending rigidity by a factor of 2.06 in the case of the apparel fabric test and 6.10 in the case of the technical fabric test. The thickness loss (%) in different polypropylene carpets exhibited a proportional relationship with the pile density. The thickness experienced a decrease with increasing pile density, primarily due to the enhanced compression load carrying capacity of each polypropylene fiber knot. This effect was more pronounced in carpets with denser knots compared to those with sparser knots per unit area. Finding from the study can be useful for the polypropylene carpet designers in particular complex curvature part manufacturing.

___

  • [1] Erdogan, G., Yucel, S., Bilisik, K. 2023. Textured Polyester Fiber in Three-Dimensional (3D) Carpet Structure Application: Experimental Characterizations under Compression-Bending-Abrasion-Rubbing Loading. Polymers, 15(14), 3006, 1-26.
  • [2] Chaudhuri, S.K., Bandyopadyay, S. 2017. Structure and properties of carpet fibres and yarns. In: Advances in Carpet Manufacture. Woodhead Publishing. pp. 19-43.
  • [3] Gupta, S.K., Goswami, K.K., Majumdar, A. 2015. Durability of Handmade Wool Carpets: A Review. Journal of Natural Fibers, 12(5), 399-418.
  • [4] Hearle, J.W.S. 2009. Fibre structure: its formation and relation to performance. In: Handbook of textile fiber structure. Volume 1: Fundamentals and manufactured polymer fibers. Eichhorn, S.J., Hearle, J.W.S., Jaffe M., Kikutani, T., Eds.; Woodhead Publishing and CRC Press LLC, Cambridge, UK, pp. 81-225.
  • [5] Mansfield, R.G. 1999. Polypropylene in the Textile Industry. Plastics Engineering, 30.
  • [6] Galanti, A.V., Mantell, C.L. 1965. Polypropylene fibers and films. Springer Science, Business Media, LLC, New Jersey, USA.
  • [7] Presley, A.B. 1997. Evaluation of carpet appearance loss: Structural factors. Textile Research Journal, 67(3), 174–180.
  • [8] Wang, J., Wood, E. J. 1994. A New Method for Measuring Carpet Texture Change. Textile Research Journal, 64(4), 215–224.
  • [9] Wilding, M. A., Lomas, B., Woodhouse, A. K. 1990. Changes Due to Wear in Tufted Pile Carpets. Textile Research Journal, 60(11), 627–640.
  • [10] Xu, B. 1997. Quantifying Surface Roughness of Carpets By Fractal Dimension. Clothing and Textile Research Journal, 15(3), 155–161.
  • [11] Postle, R., Carnaby, G. A., de-Jong S. 1988. The mechanics of wool structures. John Wiley, New York.
  • [12] Beil, N. B., Roberts, W. W. 2002. Modeling and Computer Simulation of the Compressional Behavior of Fiber Assemblies: Part I: Comparison to Van Wyk's Theory. Textile Research Journal, 72(4), 341-351.
  • [13] Vangheluwe, L., Kiekens, P. 1997. Resilience Properties of Polypropylene Carpets. Textile Research Journal, 67(9), 671-676.
  • [14] Laughlin, K. C., Cusick, G. E. 1968. Carpet Performance Evaluation, Part II: Stress-Strain Behavior. Textile Research Journal, 38(1), 72-80.
  • [15] Wood, E. J. 1993. Description and Measurement of Carpet Appearance. Textile Research Journal, 63(10), 580– 594.
  • [16] Savilla, B. P. 1999. Physical testing of textiles. The Textile Institute, Woodhead Publishing
  • [17] Goswami, K. K. 2018. Advances in carpet manufacture, Elseviere Ltd, Cambridge, MA, USA.
  • [18] Wu, J., Pan, N. Williams, K. R. 2007. Mechanical, Biomechanical and Psychophysical Study of Carpet Performance. Textile Research Journal, 77(3), 172–178.
  • [19] McNeil, S. J., Tapp, L. S. 2016. The Design and İnitial Evaluation of Visual Cues in Carpets to Assist Walking. Journal of The Textile Institute, 107(3), 376-385.
  • [20] Kucuk, M., Korkmaz, Y. 2017. Sound Absorption Properties of Acrylic Carpets. The Journal of The Textile Institute, 108(8), 1398-1405.
  • [21] Kucuk, M., Korkmaz, Y. 2019. Acoustic and Thermal Properties of Polypropylene Carpets: Effect of Pile Length and Loop Density. Fibers and Polymers, 20(7), 1519-1525.
  • [22] Grosberg, P. 1966. The Mechanical Properties of Woven Fabrics Part II: The Bending of Woven Fabrics. Textile Research Journal, 36, 205-214.
  • [23] Abbott, N.J. 1951. Part II: A Study of the Peirce Cantilever Test for Stiffness of Textile Fabrics. Textile Research Journal, 21, 441-444.
  • [24] Skelton, J. 1971. The Bending Behavior of Fabrics at High Curvatures. Textile Research Journal, 41, 174-181.
  • [25] Gibson, V.L., Postle, R. 1978. An Analysis of the Bending and Shear Properties of Woven, Double-Knitted and Warp-Knitted Outer-Wear Fabrics. Textile Research Journal, 48, 14-27.
  • [26] Matsuo, T. 1969. Bending of Woven Fabrics. Journal of the Textile Machinery Society of Japan, 15, 19-33.
  • [27] Cooper, D.N.E. 1960. The Stiffness of Woven Textiles. Journal of The Textile Institute, 51, T317-T335.
  • [28] Ghosh, T.K., Batra, S.K., Barker, R.L. 1990. The Bending Behaviour of Plain-Woven Fabrics Part I: A Critical Review. Journal of The Textile Institute, 81, 245-254.
  • [29] Hu, J. 2004. Structure and mechanics of woven fabrics. Woodhead Publishing Ltd, Cambridge, UK.
  • [30] Park J-W., Oh, A-G. 2006. Bending Rigidity of Yarns. Textile Research Journal, 76, 478–485.
  • [31] Bilisik, K. 2011. Bending Behavior of Multilayered and Multidirectional Stitched Aramid Woven Fabric Structures. Textile Research Journal, 81, 1748–1761.
  • [32] Dolatabadi, M. K., Montazer, M., Latifi, M. 2005. The Effect of Polyester Fibres on Quality of Hand-Knotted Carpets. Journal of The Textile Institute, 96, 1–9.
  • [33] Kimura, K., Kawabata, S., Kawai, H. 1970. Compressive Deformation theory of Carpets. Journal of the Textile Machinery Society of Japan, 23, T67–T76.
  • [34] Kimura, K., Kawabata, S. 1971. Improvement of the Compressive Deformation Theory of Carpets and Its Application to the Carpet Woven from Compressible Yarn. Journal of the Textile Machinery Society of Japan, 24, T207–T214.
  • [35] Celik, N., Koc, E. 2007. An Experimental Study on Thickness Loss of Wilton Type Carpets Produced with Different Pile Materials After Prolonged Heavy Static Loading. Part 2: Energy Absorption and Hysteresis Effect. Fibres & Textiles in Eastern Europe, 15, 87-92.
  • [36] Celik, N., Koc, E. 2010. Study on the Thickness Loss of Wilton-Type Carpets under Dynamic Loading. Fibres & Textiles in Eastern Europe, 78, 54-59.
  • [37] Koc, E., Celik, N., Tekin, M. 2005. An Experimental Study on Thickness Loss of Wilton-Type Carpets Produced with Different Pile Materials After Prolonged Heavy Static Loading. Part-I: Characteristic Parameters and Carpet Behaviour. Fibres & Textiles in Eastern Europe, 13, 56-62.
  • [38] Dubinskaite, K., Langenhove, L.V., Milasius, R. 2008. Influence of Pile Height and Density on The End-Use Properties of Carpets. Fibres & Textiles in Eastern Europe, 16(3), 68.
  • [39] Sarıoğlu, E., Kaynak, H.K., Çelik, H.İ., Vuruşkan, D. 2019. Effects of Structural Parameters on Compressibility and Soiling Properties of Machine Woven Carpets. Journal of The Textile Institute, 110, 1263-1270.
  • [40] Tabatabaei, S. M., Ghane M. 2015. Effect of Traffic Exposure on Toughness Characteristics of Hand-Knotted Carpets. Fibres & Textiles in Eastern Europe, 23, 64 -68.
  • [41] Jafari, S., Ghane, M., Moezzi, M. 2017. The Effect of UV Degradation on the Recovery Behaviour of Cut-Pile Carpets After Static Loading. Journal of The Textile Institute, 108, 256-259.
  • [42] Dayiary, M., Najar, S.S., Shamsi, M. 2010. An Experimental Verification of Cut-Pile Carpet Compression Behaviour. Journal of The Textile Institute, 101, 488-494.
  • [43] Dayiary, M., Najar, S.S., Shamsi, M. 2009. A New Theoretical Approach to Cut-Pile Carpet Compression Based on Elastic-Stored Bending Energy. Journal of The Textile Institute, 100, 688–694.
  • [44] Jafari, S., Ghane, M. 2016. An Analytical Approach for The Recovery Behavior of Cut Pile Carpet After Static Loading by Mechanical Models. Fibers and Polymers, 17, 651-655.
  • [45] Khavari, S., Ghane, M. 2017. An Analytical Approach for the Compression and Recovery Behavior of Cut Pile Carpets Under Constant Rate of Compression by Mechanical Models. Fibers and Polymers, 18, 190-195.
  • [46] VANDEWIELE NV. Carpet weaving: Face-to-face carpet weaving. http://www.vandewiele.be/carpetlooms.htm, (accessed on 1 January 2022).
  • [47] Erdogan, G. Yücel, S. 2023. Üç Boyutlu (3B) Polipropilen Halı Yapıların Aşınma ve Sürtünme Özellikleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 39(1), 138-149.
  • [48] ISO 4604. 1978. Textiles glass–woven fabrics–determination of conventional flexural stiffness–fixed angle flexometer method; International Organization for Standardization.
  • [49] Peirce, F.T. 1937. The Handle of Cloth as a Measurable Quantity. Journal of The Textile Institute, 21, 377–416.
  • [50] Peirce, F.T. 1937. The Geometry of Cloth Structure. Journal of The Textile Institute, 28, 45–96.
  • [51] BS 3356. 1990. Method for determination of bending length and flexural rigidity of fabrics; British Standards Institution.
  • [52] TS 1409. 1974. Method for determination of flexural rigidity of woven fabrics; Turkish Standards Institution.
  • [53] Bilisik, K., Yolacan, G. 2012. Experimental Determination of Bending Behavior of Multilayered and Multidirectionally-Stitched E-Glass Fabric Structures for Composites. Textile Research Journal, 82, 1038- 1049.
  • [54] BS 4939. 2007. Method for Determination of Thickness Loss of Textile Floor Coverings After Prolonged Heavy Static Loading; British Standards Institution.
  • [55] ISO 3416. 1986. Textile Floor Coverings; Determination of Thickness Loss After Prolonged Heavy Static Loading; International Organization for Standardization.
  • [56] TS 7125 (ISO 1766). 2003. Textile floor coverings-Determination of thickness of pile above the substrate; International Organization for Standardization.
  • [57] TS 3374 (ISO 1765). 1991. Machine made textile floor coverings- determination of thickness; International Organization for Standardization.
  • [58] ISO 139. 2005. Textiles-Standard atmospheres for conditioning and testing; International Organization for Standardization.
  • [59] Hearle, J.W.S., Grosberg, P., Backer, S. 1969. Structural mechanics of fibres, yarn and fabrics, Wiley Interscience, Inc, New York, USA.
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi-Cover
  • ISSN: 1012-2354
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Erciyes Üniversitesi
Sayıdaki Diğer Makaleler

Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller

Metin UZUN, Hasan ÇINAR, Abdullah KOCAMER, Sezer ÇOBAN

Remazol black 5 boyasının Allium scorodoprasum L. biyokütlesi ile biyolojik olarak uzaklaştırılması; biyosorpsiyon izotermleri, kinetik ve termodinamik çalışmalar

Dilek ŞENOL ARSLAN

Kapalı Formda Temsil Edilen Cebirsel Düzlem Eğrilerinin İzometrileri ve Simetrilerinin Hesaplanması

Hüsnü Anil ÇOBAN, Uğur GÖZÜTOK

Altın Madenciliğinde, Yığın Liç Alanlarının Rehabilitasyonunda Yeraltı Suyu İle Yıkanma Yaklaşımının Değerlendirilmesi

Selahattin GÜNEY, Şükrü Taner AZGIN

Fractional Mathematical Modelling of The Spread of Rotavirus Disease

Fatma ÖZKÖSE

Oransal Gecikmeli Uyumlu Zaman-Kesirli Mertebeden Genelleştirilmiş Burgers Denklemini Çözmek için Yeni Uyumlu Metotlar

Halil Hüseyin AVCI, Halil ANAÇ

Üç Boyutlu (3B) Polipropilen Havlı Halıların Eğme ve Basma Yükü Altında Karakterizasyonu

Gülhan GÜLER, Sinem YÜCEL

Türkiye'de İnşaat Sektörü ve Makro Ekonomik Göstergeler Arasındaki Çift Yönlü Etkileşimleri Nicelleştirmek için Sayısal Bir Yaklaşım

Şaban Suat ÖZSARIYILDIZ

Çelik Tel ve Cam Elyaf Ağları ile Takviye Edilmiş Tabakalı Beton Kompozitlerin Eğilme Dayanımı

Metehan ARDAHANLI, Türkay KOTAN

Investigation and Comparison of Process Parameters for Advanced High Strength Steels for Next-Generation Vehicles

Ebru BARUT, Aysegul AKDOGAN EKER, M. Emre KAYMAK