Remazol black 5 boyasının Allium scorodoprasum L. biyokütlesi ile biyolojik olarak uzaklaştırılması; biyosorpsiyon izotermleri, kinetik ve termodinamik çalışmalar

Öz: Bu çalışma, Allium scorodoprasum L. biyokütlesini Remazol black 5 (RB5) boyasının sulu çözeltilerden biyo-giderimi için bir adsorban olarak kullanmayı amaçlamaktadır. Allium scorodoprasum L. biyosorbentinin RB5'e bağlanma kapasitesi, kesikli yürütülen adsorpsiyon çalışmlarında pH, RB5 boya konsantrasyonu, temas süresi ve sıcaklıktaki değişimler kaydedilerek araştırılmıştır Deneysel verileri açıklamak için Dubinin-Radushkevich (D-R), Freundlich ve Langmuir izoterm modelleri kullanılmıştır. Biyosorbentin maksimum RB5 boya biyosorpsiyon kapasitesi 25 oC'de 19,8 mg g-1 olarak bulunmuştur. Ortalama biyosorpsiyonsuz enerji, biyosorpsiyon olayının kimyasal reaksiyonla gerçekleştiğini ve sırasıyla PFO ve IPD hız kinetiğini takip ettiğini göstermiştir. Sonuç olarak, termodinamik adsorpsiyon çalışmaları RB5 boya biyosorpsiyonunun hem endotermik hem de spontane olduğunu göstermiştir. Allium scorodoprasum L. anyonik RB5 boyası için önemli bir adsorpsiyon kapasitesine sahiptir. .

Bioremoval of Remazol black 5 dye by Allium scorodoprasum L. biomass; biosorption isotherms, kinetic and thermodynamic studies

The current study aims to use Allium scorodoprasum L. biomass as an adsorbent for the bioremoval of Remazol black 5 (RB5) dye from aqueous solutions. The binding capacity of Allium scorodoprasum L. biosorbent to RB5 was investigated by recording the changes in pH, concentration of RB5 dye, temperature and contact time in batch aqueous solutions. Dubinin-Radushkevich (D-R), Freundlich, and Langmuir isotherm models were used to explain the experimental data. The maximum RB5 dye biosorption capacity of the biosorbent was found to be 19.8 mg g-1 at 25 oC. The average biosorption-free energy indicated that the biosorption event took place by chemical reaction and that it followed the PFO and IPD rate kinetics, respectively. Finally, thermodynamic adsorption studies indicated that the RB5 dye biosorption was both endothermic and spontaneous. The Allium scorodoprasum L. had a significant adsorption capacity for the anionic RB5 dye.

___

  • [1] Chaudhry, F.N. and M. Malik, Factors affecting water pollution: a review. J. Ecosyst. Ecography, 2017. 7(1): p. 225-231.
  • [2] Ajiboye, T.O., O.A. Oyewo, and D.C. Onwudiwe, Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere, 2021. 262: p. 128379.
  • [3] Namasivayam, C., D. Sangeetha, and R. Gunasekaran, Removal of anions, heavy metals, organics and dyes [from water by adsorption onto a new activated carbon from Jatropha husk, an agro-industrial solid waste. Process Safety and Environmental Protection, 2007. 85(2): p. 181-184.
  • [4] Khan, F.S.A., et al., A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. Journal of Hazardous Materials, 2021. 413: p. 125375.
  • [5] Palani, G., et al., Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment—a review. Molecules, 2021. 26(9): p. 2799.
  • [6] Saini, R.D., Textile organic dyes: polluting effects and elimination methods from textile waste water. Int J Chem Eng Res, 2017. 9(1): p. 121-136.
  • [7] Carmen, Z. and S. Daniela, Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview. Vol. 3. 2012: IntechOpen Rijeka.
  • [8] Brillas, E. and C.A. Martínez-Huitle, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 2015. 166: p. 603-643.
  • [9] Goyal, P., C.S. Tiwary, and S.K. Misra, Ion exchange based approach for rapid and selective Pb (II) removal using iron oxide decorated metal organic framework hybrid. Journal of Environmental Management, 2021. 277: p. 111469.
  • [10] Kariminiaae-Hamedaani, H.-R., A. Sakurai, and M. Sakakibara, Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dyes and Pigments, 2007. 72(2): p. 157-162.
  • [11] Priyan, V.V., et al., Ecotoxicological assessment of micropollutant Diclofenac biosorption on magnetic sawdust: Phyto, Microbial and Fish toxicity studies. Journal of Hazardous Materials, 2021. 403: p. 123532.
  • [12] Islam, A., et al., Step towards the sustainable toxic dyes removal and recycling from aqueous solution-A comprehensive review. Resources, Conservation and Recycling, 2021. 175: p. 105849.
  • [13] Kubra, K.T., M.S. Salman, and M.N. Hasan, Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. Journal of Molecular Liquids, 2021. 328: p. 115468.
  • [14] Paredes-Quevedo, L.C., et al., Removal of a textile azo-dye (Basic Red 46) in water by efficient adsorption on [a natural clay. Water, Air, & Soil Pollution, 2021. 232: p. 1-19.
  • [15] Shen, T., et al., Single and simultaneous adsorption of basic dyes by novel organo-vermiculite: A combined experimental and theoretical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 601: p. 125059.
  • [16] Largo, F., et al., Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: Experimental and molecular dynamic simulation studies. Journal of Molecular Liquids, 2020. 318: p. 114247.
  • [17] Shirazi, E.K., et al., Removal of textile dyes from single and binary component systems by Persian bentonite and a mixed adsorbent of bentonite/charred dolomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 598: p. 124807.
  • [18] Ngah, W.W., L. Teong, and M.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate polymers, 2011. 83(4): p. 1446-1456.
  • [19] Lee, S.-L., et al., Sorption behavior of malachite green onto pristine lignin to evaluate the possibility as a dye adsorbent by lignin. Applied Biological Chemistry, 2019. 62: p. 1-10.
  • [20] Göçenoğlu Sarıkaya, A., Kinetic and thermodynamic studies of the biosorption of Cr (VI) in aqueous solutions by Agaricus campestris. Environmental Technology, 2021. 42(1): p. 72-80.
  • [21] Dalvi, V., et al., Removal of pollutants from wastewater via biological methods and shifts in microbial community profile during treatment process. Wastewater Treatment Reactors, 2021: p. 19-38.
  • [22] Kumar, A., et al., Biosorption: The removal of toxic dyes from industrial effluent using phytobiomass-A review. Plant Arch, 2021. 21: p. 1320-1325.
  • [23] Tasci, B. and I. Koca. Use of Allium scorodoprasum L. subsp. rotundum as food. in VII International Symposium on Edible Alliaceae 1143. 2015.
  • [24] Sheikh, Z., et al., Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Chemosphere, 2021. 279: p. 130545.
  • [25] Đorđevski, N., et al., Chemical and Biological Investigations of Allium scorodoprasum L. Flower Extracts. Pharmaceuticals, 2022. 16(1): p. 21.
  • [26] Demir, T., et al., Phenolic profile and investigation of biological activities of Allium scorodoprasum L. subsp. rotundum. Food Bioscience, 2022. 46: p. 101548.
  • [27] Cristóvão, R.O., et al., Modeling the discoloration of a mixture of reactive textile dyes by commercial laccase. Bioresource Technology, 2009. 100(3): p. 1094-1099.
  • [28] Peplowski, L., et al., Vibrational spectroscopy studies of methacrylic polymers containing heterocyclic azo dyes. Vibrational Spectroscopy, 2022. 120: p. 103377.
  • [29] Olawale, S.A. and O.O. Oluwasina, Kinetics Studies for the Adsorption of Aqueous Cu (II) and Pb (II) Ions onto Chicken Feather. Langmuir, 1918. 2(W3): p. W2-W1.
  • [30] Rajabi, M., et al., Comparison and interpretation of isotherm models for the adsorption of dyes, proteins, antibiotics, pesticides and heavy metal ions on different nanomaterials and non-nano materials—a comprehensive review. Journal of Nanostructure in Chemistry, 2023. 13(1): p. 43-65.
  • [31] Dubinin, M., Modern state of the theory of gas and vapour adsorption by microporous adsorbents. Pure and Applied Chemistry, 1965. 10(4): p. 309-322.
  • [32] Ho, Y.-S. and G. McKay, Sorption of dye from aqueous solution by peat. Chemical engineering journal, 1998. 70(2): p. 115-124.
  • [33] Ho, Y.-S. and G. McKay, Pseudo-second order model for sorption processes. Process biochemistry, 1999. 34(5): p. 451-465.
  • [34] Weber Jr, W.J. and J.C. Morris, Kinetics of adsorption on carbon from solution. Journal of the sanitary engineering division, 1963. 89(2): p. 31-59.
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi-Cover
  • ISSN: 1012-2354
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Erciyes Üniversitesi