Bir Rüzgâr Türbinine ait Kanat Hatve Açısının AHA Tabanlı PID Tipi Denetleyiciler ile Optimal Kontrolü

Bu çalışmada, bir rüzgâr türbinine ait kanat hatve açısı zamanla değişen rüzgâr hızı varlığında kontrol edilmeye çalışılmıştır. Böylece rüzgâr türbin sisteminin çıkış gücünün nominal çıkış gücünde tutulması ve oluşabilecek zararlardan sistemin korunması amaçlanmıştır. Bu amaçla PD (oransal-türevsel), PI (oransal-integral) ve PID (oransal-türevsel-integral) denetleyici yapıları kullanılmıştır. Denetleyicilere ait parametreler literatürde oldukça yeni olan metasezgisel optimizasyon algoritması olan yapay sinek kuşu algoritması (Artificial Hummingbird Algorithm-AHA) ile optimize edilmiştir. Her üç denetleyiciye ait parametrelerin optimizasyonu için 30 bağımsız yürütme gerçekleştirilmiş ve bu yürütmelere ait istatistiksel veriler değerlendirilmiştir. Rüzgâr türbininin modellenmesi, optimizasyonu ve kontrol çalışmaları Matlab/Simulink’te gerçekleştirilmiştir. Elde edilen standart sapma değerleri karşılaştırıldığında optimizasyon süreci boyunca AHA tabanlı PID denetleyicinin (AHA-PID) daha kararlı ve gürbüz sonuçlar ürettiği görülmektedir. Elde edilen sonuçlara göre, rüzgâr türbini çıkış gücünün nominal seviyesi için geçiş cevabı açısından AHA tabanlı PD denetleyici (AHA-PD) daha hızlı ve daha başarılıdır.

Optimal Control of Blade Pitch Angle of a Wind Turbine with AHA Based PID Type Controllers

In this study, the blade pitch angle of a wind turbine was tried to be controlled in the presence of time-varying wind speed. Thus, it is aimed to maintain the output power of the wind turbine system at its nominal output power and to protect the system from potential damages. For this purpose, PD (proportional-derivative), PI (proportional-integral) and PID (proportional-derivative-integral) controller structures were used. The parameters of the controllers are optimized with the Artificial Hummingbird Algorithm (AHA), which is a brand-new metaheuristic optimization algorithm in the literature. 30 independent runs were performed for the optimization process and the statistical data of these runs were evaluated. Modeling, optimization, and control studies of the wind turbine were carried out in Matlab/Simulink. When the obtained standard deviation values are compared, it is seen that the AHA-based PID controller (AHA-PID) produces more stable and robust results during the optimization process. According to the obtained results, the AHA-based PD controller (AHA-PD) is faster and more successful in terms of transient response for the nominal level of wind turbine output power.

___

  • [1] Gültekin, U. 2019. Türkiye'de Rüzgâr Enerjisi Yatırımlarının Gelişimi. Turkish Studies (Elektronik), 14(4), 2333-2348.
  • [2] Şenel, M. C., Koç, E. 2015. Dünyada ve Türkiye’de rüzgâr enerjisi durumu-Genel değerlendirme. Mühendis ve Makina, 56(663), 46-56.
  • [3] Koç, E., Güven, A. N. 2011. Değişken Hızlı Rüzgâr Türbinlerinin Modellenmesi ve Arıza Sonrası Sisteme Katkı Yeteneklerinin İncelenmesi/Modeling and Investigation of Fault Ride Through Capability of Variable Speed Wind Turbines. EMO Bilimsel Dergi, 1(1), 51-55.
  • [4] Hwas, A., Katebi, R. 2012. Wind turbine control using PI pitch angle controller. IFAC Proceedings Volumes, 45(3), 241-246.
  • [5] Lüy, M., Civelek, Z., Çam, E. 2017. Kalıcı mıknatıslı senkron jeneratörlü rüzgâr türbinlerinde bireysel hatve açısı kontrolü ile çıkış gücü kararlılığı ve mekanik yüklerin azaltılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(5), 504-511.
  • [6] Civelek, Z., Lüy, M., Çam, E., Barışçı, N. 2016. Control of pitch angle of wind turbine by fuzzy PID controller. Intelligent Automation & Soft Computing, 22(3), 463-471.
  • [7] Karthik, R., Hari, A. S., Kumar, Y. P., Pradeep, D. J. 2020. Modelling and control design for variable speed wind turbine energy system. International Conference on Artificial Intelligence and Signal Processing (AISP), January 10-12, Amaravati, India.
  • [8] Sougueh, I. M., Görel, G. 2022. PI, PID ve GA-PID Kontrolör ile Rüzgâr Türbinin Kanat Hatve Açısı Kontrolü. International Journal of Engineering Research and Development, 14(2), 502-513.
  • [9] Habibi, H., Nohooji, H. R., Howard, I. 2018. Adaptive PID control of wind turbines for power regulation with unknown control direction and actuator faults. IEEE Access, 6, 37464-37479.
  • [10] Han, B., Zhou, L., Yang, F., Xiang, Z. 2016. Individual pitch controller based on fuzzy logic control for wind turbine load mitigation. IET Renewable power generation, 10(5), 687-693.
  • [11] Van, T. L., Nguyen, T. H., Lee, D.-C. 2015. Advanced pitch angle control based on fuzzy logic for variable-speed wind turbine systems. IEEE Transactions on Energy Conversion, 30(2), 578-587.
  • [12] Naik, K. A., Gupta, C. P., Fernandez, E. 2020. Design and implementation of interval type-2 fuzzy logic-PI based adaptive controller for DFIG based wind energy system. International Journal of Electrical Power & Energy Systems, 115, 105468.
  • [13] Jeon, T., Paek, I. 2021. Design and verification of the LQR controller based on fuzzy logic for large wind turbine. Energies, 14(1), 230.
  • [14] Pehlivan, A. S., Bahceci, B., Erbatur, K. 2022. Genetically optimized pitch angle controller of a wind turbine with fuzzy logic design approach. Energies, 15(18), 6705.
  • [15] Zheng, S.-G., Chang, C.-K., Pan, J.-S. 2020. Double fuzzy pitch controller of wind turbine designed by genetic algorithm. International Automatic Control Conference (CACS), November 4-7, Taiwan.
  • [16] Chouket, M., Abdelkafi, A., Krichen, L. 2018. Wind Turbine PI Controller's Optimization Using PSO Algorithm. 15th International Multi-Conference on Systems, Signals & Devices (SSD), March 19-22, Tunisia
  • [17] Poultangari, I., Shahnazi, R., Sheikhan, M. 2012. RBF neural network based PI pitch controller for a class of 5- MW wind turbines using particle swarm optimization algorithm. ISA Transactions, 51(5), 641-648.
  • [18] Navarrete, E. C., Perea, M. T., Correa, J. J., Serrano, R. C., Moreno, G. R. 2019. Expert control systems implemented in a pitch control of wind turbine: A review. IEEE Access, 7, 13241-13259.
  • [19] Çelik, M., Soylu, S. 2023. Parameter estimation study of polymer electrolyte membrane fuel cell using artificial hummingbird algorithm. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(8), 1956-1967.
  • [20] Dirik, M. 2022. Comparison of Recent Meta-Heuristic Optimization Algorithms Using Different Benchmark Functions. Journal of Mathematical Sciences and Modelling, 5(3), 113-124.
  • [21] Hussain, K., Salleh, M. N. M., Cheng, S., Naseem, R. 2017. Common benchmark functions for metaheuristic evaluation: A review. International Journal on Informatics Visualization, 1(4-2), 218-223.
  • [22] Ghasemi, S., Tabesh, A., Askari-Marnani, J. 2014. Application of fractional calculus theory to robust controller design for wind turbine generators. IEEE Transactions on Energy Conversion, 29(3), 780-787.
  • [23] Garcia-Sanz, M., Houpis, C. H. 2012. Wind Energy Systems: Control Engineering Design. Taylor & Francis Group CRC press. Boca Raton, Florida, USA, 613s.
  • [24] Janssens, O., Noppe, N., Devriendt, C., Van de Walle, R., Van Hoecke, S. 2016. Data-driven multivariate power curve modeling of offshore wind turbines. Engineering Applications of Artificial Intelligence, 55, 331-338.
  • [25] Xiao, Z., Zhao, Q., Yang, X., Zhu, A. 2020. A power performance online assessment method of a wind turbine based on the probabilistic area metric. Applied Sciences, 10(9), 3268.
  • [26] Ogata, K. 2010. Modern Control Engineering. 5th edition. Prentice Hall. New Jersey, USA, 912s.
  • [27] Ang, K. H., Chong, G., Li, Y. 2005. PID Control System Analysis, Design, and Technology. IEEE Transactions on Control Systems Technology, 13(4), 559-576.
  • [28] Zhao, W., Wang, L., Mirjalili, S. 2022. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Computer Methods in Applied Mechanics and Engineering, 388, 114194.
  • [29] Frikh, M. L., Soltani, F., Bensiali, N., Boutasseta, N., Fergani, N. 2021. Fractional order PID controller design for wind turbine systems using analytical and computational tuning approaches. Computers and Electrical Engineering, 95, 107410.
  • [30] Maroufi, O., Choucha, A., Chaib, L. 2020. Hybrid fractional fuzzy PID design for MPPT-pitch control of wind turbine-based bat algorithm. Electrical Engineering, 102(4), 2149-2160.
  • [31] Civelek, Z. 2013. Bulanık PID kontrolör ile rüzgâr türbininin hatve açısının kontrolü. Kırıkkale Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek lisans tezi, 134s, Kırıkkale.
  • [32] Borase, R. P., Maghade, D., Sondkar, S., Pawar, S. 2021. A review of PID control, tuning methods and applications. International Journal of Dynamics and Control, 9, 818-827.
  • [33] Castillo-Zamora, J. J., Camarillo-Gomez, K. A., Perez-Soto, G. I., Rodriguez-Resendiz, J. 2018. Comparison of PD, PID and sliding-mode position controllers for V–tail quadcopter stability. IEEE Access, 6, 38086-38096.
  • [34] Oku, D. E., Obot, E. P. 2018. Comparative study of PD, PI And PID controllers for control of a single joint system in robots. International Journal of Engineering and Science, 7(6), 51-54.
  • [35] Song, Y.-D. 2018. Control of nonlinear systems via PI, PD and PID: Stability and performance. Taylor & Francis Group CRC press. Boca Raton, Florida, USA, 152s.
  • [36] Zhou, F., Liu, J. 2018. Pitch controller design of wind turbine based on nonlinear PI/PD control. Shock and Vibration, 2018, 1-14.
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi-Cover
  • ISSN: 1012-2354
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Erciyes Üniversitesi