Laktik Asit Bakterilerinin (LAB) İdentifikasyonunda/Tiplendirmesinde Kullanılan Moleküler Yöntemler

Laktik asit bakterileri (LAB) gıda endüstrisinde genellikle starter kültür olarak kullanılmaktadırlar. Bakteriyosin üretim özelliklerinden dolayı gıdalarda raf ömrünü uzatmak için potansiyel biyolojik koruyucu rolüne sahiptirler. Ayrıca, probiyotik ürünlerin içeriğinde bulunmakta, bazıları ise gıdalarda bozulmaya sebep olmaktadırlar. Tüm bu özellikler bu bakteri grubunu hem endüstriyel açıdan hem de bilimsel arenada üzerinde yoğun çalışmaların yapıldığı oldukça önemli bir grup haline getirmiştir. LAB’ların endüstriyel uygulamaları düşünüldüğünde, suş bazında güvenilir tiplendirme yöntemleri hem LAB starter kültürlerin performanslarının incelenmesinde hem de fonksiyonel gıda ürünlerinde katkı maddesi olarak kullanılacak olan kültürlerin incelenmesinde önem kazanmaktadır. Günümüzde, LAB identifikasyon/tiplendirme çalışmaları ilgi odağı olan fenotipik yöntemlerden daha kesin ve hassas sonuçlar veren moleküler yöntemlere (genotipik) doğru kaymıştır. Bu derlemede LAB’ların tiplendirmesinde kullanılan moleküler yöntemler özetlenmiştir.

Molecular methods used for identification/typing of lactic acid bacteria (LAB)

Lactic acid bacteria (LAB) are widely used as starter cultures in the food industry. Because of their bacteriocin production speciality, they make expire date of the food longer and thought to be potential biopreservativies. Besides, they are used in probiotic products and some of them causes food spoilage. All of these properties make this group of bacteria very important both industrially and scientificaly. As far as the industial applications of LAB are conserned, reliable strain typing methods will become increasingly important in the study of the performance of LAB starter cultures and cultures used as additives in functional food type products. Nowadays, the main focus for the identification/tying of LAB has moved from phenotypic to molecular (genotypic) methods as they yield more sensitive and accurate results. In this review, molecular methods used for typing of LAB were summarised.

___

  • Orla-Jensen, S., In S. Orla-Jensen (Ed.), The lactic acid bacteria, pp. 1-196, Copenhagen: A.F. Host and Son, 1919.
  • Axelsson, L., Lactic acid bacteria: Classification and physiology, Lactic Acid Bacteria, pp. 1-73, Microbiol. and Funct. Asp., 1998.
  • Rebecchi, A., et al., Physiological and molecular techniques for the study of bacterial community development in sausage fermentation, J. of Appl. Microbiol., 84, 1043-1049, 1998.
  • Kleanhammer, Y.R., Bacteriocins of lactic acid bacteria, Biochimie., 70, 337-349, 1988.
  • Rademaker, J.L.W. and de Brujin, F.J., Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer-assisted patern analysis, http//www.msu.edu.edu./user/debruıjn/dna1- 4htm, Nov. 2000.
  • Dicks, L.M.T., et al., Taxonomy of Leuconostoc species, particularly Leuconostoc oenos, as revealed by numerical analysis of total soluble cell protein patterns, DNA base compositions and DNA-DNA hybridizations, Int. J. of Sys. Bacteriol., 40, 83-91, 1990.
  • Dykes, G.A., et al., Strain typing in the genus Lactobacillus, Lett. in Appl. Microbiol., 19, 63
  • Khaled, D.K., et al., Identification and phylogenetic analysis of Lactobacillus using multiplex RAPD-PCR, FEMS Microbiol. Lett., 153, 191-197, 1997.
  • Falsen, E., et al., Phenotyping and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov., Int. J. of Syst. Bacteriol., 49, 217-221, 1999.
  • Pot, B., et al., Identification and classification of Lactobacillus acidophilus, L. gasseri and L. johnsonii strains by SDS-PAGE and rRNA targeted oligonucleotid probe hybridization, J. of General Microbiol., 139, 513-517,1993.
  • Temmermann, R., et al., Identification of lactic acid bacteria: Culture-dependent and culture- independent methods, Trends in Food Sci. & Techn., 15, 348-359, 2004.
  • Babalola, O.O., Molecular techniques: An overview of methods for the detection of bacteria, African J. of Biotechnol., 2(12), 710- 713, 2003.
  • Moschetti, G., et al., Random amplified polymorphic DNA and amplified ribosomal DNA spacer polymorpism: Powerful methods to differantiate Streptococcus thermophilus strains, J. of Appl. Microbiol., 85, 25-36, 1998.
  • Bush, U. and Nitschko, H., Methods for differentiation of microorganisms, J. of Chromat. B, 722, 263-278, 1999.
  • Dijkshoorn, L., et al., Strain, clone and species: comments on three basic concepts of bacteriology, J. of Medical Microbiol., 49, 397- 401, 2000.
  • Ehrmann, M.A and Vogel, R.F., Molecular taxonomy and genetics of sourdough lactic acid bacteria, Food Sci. and Techn., 20, 1-12, 2005.
  • Moschetti, G., et al., Nisin producing organisms during tradditional Fior di latte cheese making monitored by multiplex-PCR and PFGE analysis, Int. J. of Food Microbiol., 63, 109-116, 2001.
  • Prakash, O., et al., Polyphasic approach of bacterial classifification: An overview of recent advances, Indian J. of Microbiol., 47, 98-108, 2007.
  • Gordillo, M.E., et al., Comparison of ribotyping and pulsed-field gel electrophoresis for subspecies differentiation of strains of Enterococcus faecalis, J. of Clinical Microbiol., 31; 1570-1574, 1993.
  • Donabedian, S., et al., DNA hybridization and contour-clamped homogeneous electric field electrophoresis for identification of Enterococci to the species level, J. of Clinical Microbiol., 33, 141-45, 1995.
  • Tenover, F.C., et al. Interpreting chromosomal DNA restriction pattern produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing, J. of Clinical Microbiol., 33, 2233-2239, 1995.
  • Patterson, J.E. and Kelly, C.C., Pulsed-field gel electrophoresis as an epidemiologic tool for Enterococci and Streptococci, Methods in Cell Biol., 20, 233-239, 1998.
  • Matushek, M.G., et al., Rapid preparation of bacterial DNA for pulsed-field gel electrophoresis, J. of Clinical Microbiol., 34, 2598-2600, 1996.
  • Turabelidze, D., et al., Improved pulsed-field gel electrophoresis for typing vancomycin-resistant Enterococci, J. of Clinical Microbiol., 38, 4242- 4245, 2000.
  • Woese, C.R., Bacterial evolution, Microbiol. Rev., 51, 221-271, 1987.
  • Björkroth, K.J., et al., Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions, Appl. and Environ. Microbiol., 66, 3764-3772, 2000.
  • Fernández, E., et al., Streptococcus equi subsp. ruminatorum subsp. nov., isolated from mastitis in small ruminants, Int. J. of Evolutionary Microbiol., 54, 2291-2296, 2004.
  • Kostinek, M., et al., Lactobacillus arizonensis is a later heterotypic synonym of Lactobacillus plantarum, Int. J. of Syst. and Evolutionary Microbiol., 55, 2485-2489, 2005.
  • Schlegel, L., et al., Streptococcus infantarius sp. nov., infantarius subsp. nov. and Streptococcus infantarius subsp. coli subsp. nov., isolated from humans and food, Int. J. of Syst. Evolutionary Microbiol., 50, 1425-1434, 2000.
  • Suzuki, K., et al., Lactobacillus paracollinoides sp. nov., isolated from brewery environments. Int. J. of Syst. Evolutionary Microbiol., 54, 115- 117, 2004.
  • Hall, L.M.C., et al., Typing of Enterococcus species by DNA restriction fragment analysis, J. of Clinical Microbiol., 30, 915-919, 1992.
  • Gordillo, M.E., et al., Comparison of ribotyping and pulsed-field gel electrophoresis for subspecies differentiation of strains of Enterococcus faecalis, J. of Clinical Microbiol., 31, 1570-1574, 1993.
  • Woodford, N., et al., Application of resistant Enterococci, J. of Clinical Microbiol., 31, 653
  • Kostman, et al., Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping, J. of Clinical Microbiol., 30, 2084-2087, 1992.
  • Duffner, F. and O’Connell, M., Comparative evaluation of plasmid profiling and ribotyping in the analysis of Lactobacillus plantarum strain heterogeneity in silage, J. of Appl. Bacteriol., 78, 20-27, 1995.
  • Kondo, J.K. and Mc Kay, L.L., Gene transfer systems and molecular cloning in group N streptococci: A review, J. of Dairy Sci., 37, 1193-1195, 1985.
  • Neve, H., et al., Conjugation, a common plasmid transfer mechanism in lactic acid streptococci of dairy starters, Syst. and Appl. Microbiol., 9, 151
  • Maslow, J.N., et al., Molecular epidemiology: Application of contemporary techniques to the typing of microorganisms, Clin. Infect. Dis.,17, 153-164, 1993.
  • Hartstein, A.I., et al, In vivo stability and discriminatory power of methicillin-resistant Staphilococcus aureus typing by restriction endonuclease analysis of a plasmid DNA compared with those of other molecular methods, J. of Clinical Microbiol., 33, 2022- 2026, 1995.
  • Grimont, F. and Grimont, P.A.D., DNA fingerprinting. Nucleic Acid Techniques in Bacterial Systematics, pp. 249-280, Stackebrandt, E. and Goodfellow, M., John Wiley and Sons, Chichester, 1991.
  • Giovanetti, L. and Ventura, S., Application of total DNA restriction pattern analyses to identification and differentiation of bacterial strains, Methods in Molecular Biology,Vol 46: Diagnostics Bacteriology Protocols, pp. 165-179, Howard, J. and Whitcombe, D.M., Humana Press, Totowa, New Jersey, 1995.
  • Kabadjova, P., et al., Differentiation of closely related carnobacterium food isolates based on 16S-23S ribosomal DNA intergenic spacer region polymorphism. Appl. and Environ. Microbiol., 68, 5358-5366, 2002.
  • Welsh, J. and Mc Clelland, M., Fingerprinting genomes using PCR with arbitrary primers, Nuc. Acids Res., 18, 7213-7218, 1990.
  • Williams, J.G.K., et al., DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nuc. Acids Res., 18, 6531- 6535, 1990.
  • Caetano-Anolles, G., et al., High resolution DNA amplification fingerprinting using very short arbitrary oligonucleotide primers, Biotech., 9, 553-557, 1991a.
  • Vaneechoutte, M., DNA fingerprinting techniques for microorganisms. A proposal for classification and nomenclature, Mol. Biotech., 6, 115-142, 1996.
  • Tingey, S.V. and Del Tufa, J.P., Genetic Analysis With Random Amplified Polimorphic DNA Markers, Plant Phys., 101, 349-352, 1993.
  • Cocconelli, P.S., et al., Use of RAPD and 16 S rDNA sequencing for the study of Lactobacillus population dynamics in natural whey culture, Lett. in Appl. Microbiol., 24, 8-12, 1997.
  • Taillez, P., et al., Estimation de la diversite parmi les souches de la collection CNRZ: Application dfe la RAPD a un groupe de Lactobacilles, Le Lait, 76, 147-158, 1996.
  • Koeleman, J.G., et al., Nosocomial outbreak of multiresistant Acinetobacter baumannii on a surgical ward: epidemiology and risk factors for acquisition. J. of Hosp. Infect., 37, 113-123, 1997.
  • Janssen, P., et al., Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy, Microbiol., 142, 1881-1893, 1996.
  • Huys, G., et al., High-resolution genotypic analysis of the genus Aeromonas by AFLP fingerprinting, Int. J. of Sys. Bacteriol., 46(2), 572-580,1996.
  • Vos, P., et al., AFLP: a new technique for DNA fingerprinting, Nuc. Acids Res. 23(21), 4407- 4414, 1995.
  • Mueller, U.G. and Wolfenbarger, L.L., AFLP genotyping and fingerprinting, TREE, 14, 389- 394, 1999.
  • Blears, M.J., et al, Amplified fragment length polymorphism (AFLP): Review of the procedure and its applications, J. of Indust. Microbiol. and Biotech., 21, 99-114,1998.
  • Versalovic, J., et al., Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR), Methods in Mol. and Cell. Biol., 5, 25-40, 1994.
  • Lupski, J.R. and Wolfenbarger, L.L., Short, interspersed repetitive DNA sequences in prokaryotic genomes, J. of Bacteriol., 174, 4525- 4529, 1992.
  • Prakash, O., et al., Polyphasic approach of bacterial classifification: An overview of recent advances, Indian J. of Microbiol., 47, 98-108, 2007.
  • Van der Zee, A., et al., Molecular genotyping of Staphylococcus aureus strains: comparision of repetitive element sequence based PCR with various typing methods and isolation of novel epidemicity marker, J. of Clinical Microbiol., 37, 342-349, 1999.
  • Carson, C.A., et al., Comparison of ribotyping and repetitive extragenic palindromic-PCR for identification of fecal Escherichia coli from humans and animals. Appl. and Environ. Microbiol., 69,1836-1839, 2003.
  • Olive, D.M. and Bean, P., Principles and applications of methods for DNA-based typing of microbial organisms, J. of Clinical Microbiol., 37, 1661-1969, 1999.
  • Georghiou, P.R., et al., Molecular epidemiology of infections due to Enterobacter aerogenes: Identification of hospital-associated strains by molecular techniques, Cli. Infect. Diseas., 20, 84
  • Andrighetto, C., et al., Molecular identification and cluster analysis of homofermentative thermophilic lactobacilli isolated from dairy products, Res. in Microbiol., 149, 631-643, 1998.
  • Leblond-Bourget, et al., 16s rRNA and 16s to 23s internal transcribed spacer sequence analyses reveal inter and intraspecific Bifidobacterium phylogeny, Int. J. of Sys. Bacteriol., 102-111, 1996.
  • Toth, I.K., et al., Rapid identifification and differentiation of the soft rot Erwinias by 16S- 23S Intergenic transcribed spacer-PCR and restriction fragment length polymorphism analyses, Appl. and Environ. Microbiol., 67, 4070-4076, 2001.
  • Barry, T., et al., The 16S/23S ribosomal spacer as a target for DNA probes to identify eubacteria, PCR Methods and Appl., 151-56, 1991.
  • Klaenhammer, T.R., Genetics of bacteriocins produced by lactic acid bacteria, FEMS Microbol. Rev., 12, 39-86, 1993.
  • Sneath, P.H.A., et al., Numerical taxonomy, Freeman, San Francisco,1973.
  • Mohania, D., et al., Molecular approaches for identification and characterization of lactic acid bacteria, J. of Digestive Dis., 9, 190-198, 2008.
  • Sneath, P.H.A., The application of computers to taxonomy, J. of General Microbiol., 17, 201-226, 1957b.
  • Baumann, P., et al., A study of the MoraxeUa group II. Oxidativenegative species (genus Acinetobacter), J. of Bacteriol., 95, 1520-1541, 1968.
  • Lockhart, W.R. and Liston, J., Methods for numerical taxonomy, American Society for Microbiol., Bethesda, MD, 1970.
  • Kersters, K. and De Ley, J., Identification and grouping of bacteria by numerical analysis of their protein patterns, J. of General Microbiol., 87, 333-342, 1975.
Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi-Cover
  • ISSN: 1012-2354
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1985
  • Yayıncı: Erciyes Üniversitesi