İndigo boyar maddesi içeren atıksu renginin elektro-fenton prosesi ile giderimi

Bu çalışmada biyolojik arıtıma dirençli olan indigo boyaması yapan tekstil endüstrisi atıksuyunda renk giderimi için elektro - Fenton yönteminin uygulaması gerçekleştirilmiştir. Bu atıksuda en iyi renk giderimini sağlamak amacıyla sistemde elektriksel akım uygulaması ile farklı pH seviyelerinde, değişen Fe +2 konsantrasyonlarında ve farklı H 2 O 2 dozajlarında deneyler gerçekleştirilmiştir. Farklı başlangıç pH seviyelerinde çalışılan deney serilerinde pH: 4 için elde edilen renk giderimi %100 olarak bulunmuştur. Ayrıca ortama ilave edilen H 2 O 2 dozajı optimize edilerek ve pH:4’de çözünen Fe +2 konsantrasyonuna göre Fe +2 : H 2 O 2 molar oranı 1: 73 olarak belirlenmiştir.

Color removal from ındigo dye containing wastewater by electro-fenton process

In this study, electro - Fenton technique was applied for the removal of color from the textile wastewater contaminated with indigo dyes. To achieve the complete decolorization, a series of experiments were carried out at different initial pH and Fe +2 and H 2 O 2 concentrations . The complete decoloration for indigo dyes was obtained at pH 4. Additionally, Fe +2 : H 2 O 2 dosage was found to be 1: 73 by optimizing the H 2 O 2 dosage, considering the concentration of Fe +2 in the reactor

___

  • Anotai, J., et al., Kinetics of aniline degradation by Fenton and electro-Fenton processes, Water Res. 40 (9), 1841–1847, 2006.
  • APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, 1995.
  • Brillas, E., et al., Aniline mineralization by AOP’s: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Appl. Catal. B: Environ. 16 (1), 31–42, 1998.
  • Brillas, E., Casado, J., Aniline degradation by Electro-Fenton and peroxicoagulation processes using a flow reactor for wastewater treatment, Chemosphere 47, 241–248, 2002.
  • Brillas, E., et al., Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 109 (12), 6570– , 2009.
  • Chung, K.T., et al., Mutagenicity testing of some commonly used dyes, Appl. Environ. Microbiol. 42, –648, 1981.
  • Correia, V.M., et al., Characterization of textile wastewaters-a review, Environ. Technol. 15, 917– , 1994.
  • Do, J.S., Chen, C.P., In situ oxidative degradation of formaldehyde peroxide. J. Electrochem. Soc. 140 (6), 1632–1637, electrogenerated hydrogen
  • Edgar J., et al., Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro- Fenton processes with a boron-doped diamond anode, Chemosphere 82, 495–501, 2011.
  • El-Desoky, H.S., et al., Decolorizaiton and degradation of Ponceau S azo-dye in aqueous solutions by the electrochemical advanced Fenton oxidation, Desalination 264, 143-150, 2010.
  • Forgacs, E., et al., Decolorization of wastewaters: a review, Environ. Int. 30 953–971, 2004.
  • Fockedey, E., Van Lierde, A., Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes,Water Res. 36, –4175, 2002.
  • Garrote, J.I., et al., Treatment of tannery effluent by a two step coagulation/floculation processe, Water Res. 29 2605–2608, 1995.
  • Ghoneim, M., et al., Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions, Desalination, 274, 22-30, 2011.
  • González, K. C., et al., Determination of optimum operating decolorization by electro-Fenton process using BDD cathode, Chemical Engineering Journal 160, 199– , 2010. for Acid Yellow
  • Haug, W., et al., Mineralization of the sulfonated azo aminonaphthalene- 2-sulfonate-degrading bacterial consortium, Appl. Environ. Microbiol. 57, 3144– , 1991. Yellow by a
  • Huang, Y-H., et al., Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-fenton and photo-fenton, J.Hazard. Mater. 154, 655-662, 2008.
  • Kudlich, M., Simultaneous anaerobic and aerobic degradation of the sulfonated azo dye Mordant Yellow 3 by immobilized cells from a naphthalenesulfonate-degrading Appl.Microbiol. Biotechnol. 46, 597–603, 1996.
  • Lahkimi, A.et al., Removal of textile dyes from water by the electro-Fenton process, Environ. Chem. Lett. 5, –39, 2007.
  • Lei, H., et al., Electro-Fenton degradation of cationic red X-GRL using an activated carbon fiber cathode, Process Safety and Environmental Protection 88, 431– , 2010.
  • Martínez-Huitle, C.A., Brillas, E., Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B: Environ. 87 (3–4), 105–145, 2009.
  • Oturan, M.A., et al., Hydroxylation of aromatic drugs by the electro-Fenton method. Formation and identification of the metabolites of Riluzole. New J. Chem. 23 (8), 793–794, 2009. Oturan, M.A., Pinson, J., Hydroxylation by
  • Electrochemically Generated Hydroxyl Radicals Mono and Polyhydroxylation of Benzoic Acid: Products And İsomers’distribution. J. Phys. Chem., 99: 13948- , 1995.
  • Pinheiro, H.M., et al., Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters, Dyes Pigment 61, 121–139, 2004.
  • Rosales, E., et al., Electro-fenton decoloration of dyes in a continuous reactor: A promising technology in colored wastewater treatment, Chemical Eng. J., 155, 67, 2009.
  • Solmaz, S.K.A., et al., Colour and COD removal from textile effluent by coagulation and advanced oxidation processes, Soc. Dyers Colorists Color. Technol. 122, –109, 2006.
  • Yuan, S., et al., Treatment of nitrophenols by cathode reduction and electro-Fenton methods. J. Hazard. Mater. 137 (1), 573–580, 2006.
  • Zhou, M., et al., Electro-Fenton method for the removal of methyl red in an efficient electrochemical system, Sep. Purif. Technol. 57, 380–387, 2007.