Fermentatif biyohidrojen üretim proseslerinde hidrojen veriminin geliştirilmesindeki yaklaşımlar

Biyohidrojen üretim proseslerinin ticarileştirilmesindeki en önemli kısıtlama, düşük hidrojen verimi ve üretim hızıdır. Bu engelleri gidermek için, mikrobiyal topluluğun geliştirilmesi, mikroorganizmaların genetik değişikliği, metabolik yolizi mühendisliği (rekabet edici reaksiyonların elenmesi), biyoreaktör tasarımının geliştirilmesi (organizma tipi, pH, substrat yüklemesi, reaktör tipi, substrat tipi gibi biyoproses parametrelerinin optimizasyonu), H2 kısmı basıncının ayarlanması gibi biyohidrojen üretim proseslerinin farklı alanlarında ilerlemeler elde edilmiştir. Bu derleme yazı fermentasyonla hidrojen veriminin geliştirilmesinde bu yaklaşımlardaki ilerlemeleri tanımlar.

Approaches towards Improvement of Hydrogen Yield in Fermentative Biohydrogen Production Processes

Major constraints to the commercialization of biohydrogen production processes include lower hydrogen yields and rates of hydrogen production. To overcome these drawbacks, advances in different areas of biohydrogen production processes have been carried out, which are development of microbial consortium, genetic modification of the microorganisms, metabolic pathway engineering (elimination of competing reactions), the improvement of the bioreactor design (optimization of bioprocess parameters such as type of organism, pH, substrate loading, type of reactor, type of substrate), H2 partial pressure, etc. This review describes advances in these approach towards improvement of hydrogen yield by fermentation.

___

  • Davila-Vazquez, G., Cota-Navarro, C.B., Rosales-Colunga, L.M., de Leon-Rodriguez, A., Flores, E.R., Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate, International Journal of Hydrogen Energy, 34, 4296-4304, 2009.
  • Nath, K., Das, D., Improvement of fermentative hydrogen production: various approaches, Appl Microbiol Biotechnol, 65, 520-529, 2004.
  • Alvarez, M.J., Biomethanization of the organic fraction of municipal solid waste, pp 1-43, IWA Publising, Londan,2003.
  • Manish, S., Banerjee, R., Comparison of biohydrogen production processes, International Journal of Hydrogen Energy, 33, 279-286, 2008.
  • Valdez-Vazquez, I., Poggi-Varaldo, H.M., Hydrogen production by fermentative consortia, Renewable and Sustainable Energy Reviews, 13, 1000-1013, 2009.
  • Bartacek, J., Zabranska, J., Lens, P.N.L., Developments and constraints in fermentative hydrogen production, Biofuels, Bioproducts & Biorefining, 1, 201-214, 2007.
  • Kim, D.H., Han, S.K., Kim, S.H., Shin, H.S., Effect of gas sparging on continuous fermentative hydrogen production, International Journal of Hydrogen Energy, 31, 2158-2169, 2006.
  • Angenent, L.T., Karim, K., Al-Dahhan, M.H., Wreenn, B.A., Domiguez-Espinosa, R., Production of bioenergy and biochemical from industrial and agricultural wastewater, Trends in Biotechnology, 22, 477-485, 2004
  • Nandi, R., Sengupta, S., Microbial Production of Hydrogen: An Overview, Critical Reviews in Microbiology, 24(1), 61-84, 1998.
  • Hallenbeck, P.C., Ghosh, D., Advances in fermentative biohydrogen production: the way forward?, Trends in Biotechnology, 27, 287-297, 2009.
  • Hallenbeck, P.C., Ghosh, D., Skonieczny, M.T., Yargeau, V., Microbiological and engineering aspects of biohydrogen production, Indian J Microbiol, 49, 48-59, 2009.
  • Das, D., Advances in biohydrogen production processes: An approach towards commercialization, International Journal of Hydrogen Energy, 34, 7349-7357, 2009.
  • Wang, J., Wan, W., Factors influencing fermentative hydrogen production: A review, International Journal of Hydrogen Energy, 34, 799-811, 2009.
  • Wongtanet, J., Sang, B.I., Lee, S.M., Pak, D., Biohydrogen production by fermentative process in continuous stirred-tank reactor, International Journal of Gren Energy, 4, 385-395, 2007.
  • Azbar, N., Çetinkaya Dokgöz, F.T., Keskin, T., Korkmaz, K.S., Syed, H.M., Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions, International Journal of Hydrogen Energy, 34, 7441-7447, 2009.
  • Krupp, M., Widmann, R., Biohydrogen production by dark fermentation: Experinces of continuous operation in large lab scale, International Journal of Hydrogen Energy, 34, 4509-4516, 2009.
  • Hallenbeck, P.C., Fermentative hydrogen production: Principles, progress, and prognosis, International Journal of Hydrogen Energy, 34, 7379-7389, 2009.
  • Kapdan, I.K., Kargı, F., Bio-hydrogen production from waste materials, Enzyme and Microbial Technology, 38, 569-582, 2006.
  • Davila-Vazquez, G., Arriaga, S., Alatriste- Mondragon, F., de Leon-Rodriguez, A., Rosales- Colunga, L.M., Razo-Flores, E., Fermentative biohydrogen production: trends and perspectives, Rev Environ Sci Biotechnol, 7, 27-45, 2008.
  • Skonieczny, M.T., Yargeau, V., Biohydrogen production from wastewater by Clostridium beijerinckii: Effect of pH and substrate concentration, International Journal of Hydrogen Energy, 34, 3288-3294, 2009.
  • Chong, M.L., Sabaratnam, V., Shirai, Y, Hassan, M.A., Biohydrogen production from biomass and industrial wastes by dark fermentation, International Journal of Hydrogen Energy, 34, 3277-3287, 2009.
  • Mathews, J., Wan,g G., Metabolic pathway engineering for enhanced biohydrogen production, International Journal of Hydrogen Energy, 34, 7404-7416, 2009.
  • Kotay, S.M., Das, D., Biohydrogen as a renewable energy resource-Prospects and potentials, International Journal of Hydrogen Energy, 33, 258-263, 2008.
  • Angenent, L.T., Karım, K., Al-Dahhan, M.H., Wrenn, B.A., Domiguez-Espinosa, R., Production of bioenergy and biochemicals from industrial and agricultural wastewater, Trends in Biotechnology, 22, 477-485, 2004.
  • Alshiyab, H.S., Kalil, M.S., Hamid, A.A., Yusoff, W.M.W., Improvement of Biohydrogen Production under Increased the Reactor Size by C. acetobutylicum NCIMB 13357, American Journal of Environmental Science, 5, 33-40, 2009.
  • Das, D., Veziroğlu, T.N., Advances in biological hydrogen production process, International Journal of Hydrogen Energy, 33, 6046-6057, 2008.
  • Callı, B., Chung, L.C., Arslan, D., Vanbroekhoven, K., H thermophilic mixed fermentation, Journal of Environmental Science and Health Part A, 44, 78- 86, 2009.
  • production potential in
  • Mandal, B., Nath, K., Das, D., Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae, Biotechnol Lett, 28, 831-835, 2006.
  • Das, D., Veziroğlu, T.N., Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy, 26, 13- 28, 2001.
  • Li, C., Fang, H.H.P., Fermentative Hydrogen Production from Wastewater and Solid Wastes by Mixed Cultures, Critical Reviews in Environmental Science and Technology, 37, 1-39, 2007.
  • Das, D., Khanna, N., Veziroğlu, T.N., Recent Developments in Biological Hydrogen Production Processes, Chemical Industry & Chemical Engineering Quarterly, 14, 57-67, 2008.
  • Li, Y.F., Ren, N.Q., Chen, Y., Zheng, G.X., Ecological mechanism of fermentative hydrogen production by bacteria, International Journal of Hydrogen Energy, 32, 755-760, 2007.
  • Ren, N.Q., Li, Y.F., Wang, A.J., Li, J.Z., Ding, J., Zadsar, M., Hydrogen production by fermentation: Review of a new approach to environmentally safe energy production, Aquatic Ecosystem Health & Management, 9, 39-42, 2006.
  • Guo, W.Q., Ren, N.Q., Chen, Z.B., Liu, B.F., Wang, X.J., Xiang, W.S., Ding, J., Simultaneous biohydrogen production and starch wastewater treatment in an acidogenic expanded granular sludge bed reactor by mixed culture for long-term operation, International Journal of Hydrogen Energy, 33, 7397-7404, 2008.
  • Ghosh, D., Hallenbeck, P.C., Response surface methodology for process parameter optimization of hydrogen yield by the metabolically engineered strain Escherichia coli DJT135, Bioresource Technology, 101,1820-1825, 2010.
  • Lin, C.Y., Chang, C.C., Hung, C.H., Fermentative hydrogen production from starch using natural mixed cultures, International Journal of Hydrogen Energy, 33, 2445-2453, 2008.
  • Chen, W.H., Sung, S., Chen, S.Y., Biological hydrogen production in an anaerobic sequencing batch reactor: pH and cyclic duration effects, International Journal of Hydrogen Energy, 34, 227-234, 2009.
  • Su, H., Cheng, J., Zhou, J., Song, W., Chen, K., Improving hydrogen production from cassava starch by combination of dark and photo fermentation, International Journal of Hydrogen Energy, 34, 1780-1786, 2009.