Bitkilerde krom toksisitesi ve hücresel cevaplar

Birçok endüstri alanında çeşitli krom bileşiklerinin aşırı kullanımı, çevrenin bu elementle kontaminasyonu konusunda endişenin artmasına neden olmaktadır. Kromun alınımı ve fitotoksik etkileri bu elementin oksidasyon durumuna bağlıdır. Kromun hem hekzavalent [Cr(VI)] hem de trivalent [Cr(III)] formu fitotoksiktir; fakat Cr(III)’a göre Cr(VI) daha toksiktir. Bitkiler Cr için spesifik bir transport sisteminden yoksun olduğu için sülfat ve demir gibi iyonların taşıyıcıları tarafından alınmaktadır. Krom fitotoksisitesi tohum çimlenmesi ve fide büyümesini inhibe etmekte, besin ve su dengesini bozmakta, pigmentleri degrade etmekte, heme enzimlerinin aktivitesini azaltmakta ve çeşitli metabolitlerin birikimini teşvik etmektedir. Krom fotosentez ve solunum gibi fizyolojik işlevlerde olumsuz etkilere neden olmaktadır. Krom oksidatif zarara neden olan reaktif oksijen türlerinin oluşumunu teşvik etmektedir. Reaktif oksijen türleri lipit peroksidasyonunu başlatma kapasitesine sahiptir. Organik asitler, antioksidant enzimler, prolin birikimi, metallotiyoneinler, alternatif oksidaz yolu ve stres proteinleri bitkilerde ağır metal toleransı mekanizmalarının bileşenleri olarak önemlidir ve toksik metallerin detoksifikasyonu ile ilişkilidir.

Chromium toxicity and cellular responses in plants

The extensive use of various chromium compounds in numerous industries has caused increasing concern about environmental contamination with this element. The uptake and phytotoxic effects of Cr depends on its oxidation state. Both hexavalent [Cr(VI)] and trivalent [Cr(III)] forms of Cr are phytotoxic, but Cr(VI) is more toxic than Cr(III). Since plants lack a specific transport system for Cr, it is taken up by carriers of essential ions such as sulfate or iron. Cr phytotoxicity inhibits seed germination and seedling growth, disrupts nutrient and water balance, degrades the pigments, reduces the activities of heme enzymes, and induces accumulation of various metabolites. Chromium causes deleterious effects on plant physiological processes such as photosynthesis and respiration. Chromium induces formation of reactive oxygen species, resulting in oxidative damage. The reactive oxygen species have the capacity to initiate lipid peroxidation. Organic acids, antioxidant enzymes, proline accumulation, metallothioneins, alternative oxidase pathway and stress proteins are important in plants as components of tolerance mechanisms and are also involved in detoxification of toxic metals.

___

  • Zayed, A.M., Terry, N., Chromium in the Environment: Factors Affecting Biological Remediation, Plant Soil, 249, 139-156, 2003.
  • Hall, J.L., Cellular Mechanisms for Heavy Metal Detoxification and Tolerance, J. Exp. Bot., 53, 1-11, 2002.
  • Ekmekçi, Y., et al., Effects of Cadmium on Antioxidant Enzyme and Photosynthetic Activities in Leaves of Two Maize Cultivars, J. Plant Physiol., 165, 600-611, 2008.
  • Rout, G.R., et al., Differential Chromium Tolerance Among Eight Mung Bean Cultivars Grown in Nutrient Culture, J. Plant Nutr., 20, 341-347, 1997.
  • Sinha, S., et al., Chromium Induced Lipid Peroxidation in The Plants of Pistia Stratiotes L., Role of Antioxidants and Antioxidant Enzymes, Chemosphere, 58, 595-604, 2005.
  • Panda, S.K., Chromium-Mediated Oxidative Stress and Ultrastructural Changes in Root Cells of Developing Rice Seedlings, J. Plant Physiol., 164, 1419-1428, 2007.
  • Liu, D.H., et al., Hexavalent Chromium Uptake and Its Effects on Mineral Uptake, Antioxidant Defence System and Photosynthesis in Amaranthus viridis L., Bioresource Technol., 99, 2628-2636, 2008.
  • Cobbett, C., Goldsbrough, P.B., Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis, Annu. Rev. Plant Biol., 53, 159-182, 2002.
  • Cobbett, C.S., Phytochelatin Biosynthesis and Function in Heavy-Metal Detoxification, Curr. Opin. Plant Biol., 3, 211-216, 2000.
  • Rascio, N., Navari-Izzo, F., Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them So Interesting? Plant Sci., 180, 169-181, 2011.
  • Han, F.X., et al., Phytoavailability and Toxicity of Trivalent and Hexavalent Chromium to Brassica juncea, New Phytol., 162, 489-499, 2004.
  • Dixit, V., et al., Chromium Ions Inactivate Electron Transport and Enhance Superoxide Generation in vivo in Pea (Pisum sativum L. cv. Azad) Root Mitochondria, Plant Cell Environ., 25, 687-690, 2002.
  • Strlic, M., et al., A Comparative Study of Several Transition Metals in Fenton Like Reaction System at Circum-Neutral pH. Acta Chim. Slov., 50, 619-632, 2003.
  • Lindberg, S., et al., Atmosphere-Surface Exchange of Mercury in A Forest: Results of Modeling and Gradient Approaches, J. Geophys. Res., 97: 2519-2528. 1992
  • Marschner, H., Mineral Nutrition of Higher Plants, London, Academic Press, 2002.
  • Greger, M., Metal Availability and Bioconcentration in Plants, pp.1-27, In: Prasad, M.N.V., Hagemeyer, J., (Eds), Heavy Metal Stress in Plants-From Molecules to Ecosystems. Springer, Berlin, 1999.
  • Zayed, A.M., et al., Chromium Accumulation, Translocation and Chemical Speciation in Vegetable Crops, Planta, 206, 293-299, 1998.
  • Howe, J.A., et al., Localization and Speciation of Chromium in Subterranean Clover Using XRF, XANES, and EPR Spectroscopy, Environ. Sci. Technol., 37, 4091-4097, 2003.
  • Wallace, A., et al., Some Effects of Chromium Toxicity on Bush Bean Plants Grown in Soil, Plant Soil, 44, 471-473, 1976.
  • Skeffington, R.A., et al., Chromium Uptake and Transport in Barley Seedlings Hordeum vulgare, Planta, 132, 209-214, 1976.
  • Ramachandran, V., et al., Uptake and Transport of Chromium in Plants, J. Nucl. Agric. Biol., 9, 126-129, 1980.
  • Vernay, P., et al., Effect of Chromium Species on Phytochemical and Physiological Parameters in Datura innoxia, Chemosphere, 72, 763-771, 2008.
  • Gardea-Torresdey, J.L. et al., Bioccumulation of Cadmium, Chromium and Copper by Convolvulus arvensis L., Impact on Plant Growth and Uptake of Nutritional Elements, Bioresource Technol., 92, 229- 235, 2004.
  • Golovatyj, S.E., et al., Effect of Levels of Chromium Content in a Soil on Its Distribution in Organs of Corn Plants, Soil Res. Fertil., 99, 197-204, 1999.
  • Huffman, E.W.D., Allaway, H.W., Chromium in Plants: Distribution in Tissues, Organelles, and Extracts and Availability of Bean Leaf Cr to Animals, J. Agric. Food Chem., 21, 982-986, 1973.
  • Shanker, A.K., et al., Differential Antioxidative Response of Ascorbate Glutathione Pathway Enzymes and Metabolites to Chromium Speciation Stress in Green Gram (Vigna radiata (L.) R. Wilczek. cv. CO4) Roots, Plant Sci., 166, 1035-1043, 2004.
  • Gikas, P., Romanos, P., Effects of Trivalent (Cr(III)) and Hexavalent (Cr(VI)) Chromium on the Growth of Activated Sludge, J. Hazard. Mater., 133, 212-217, 2006.
  • Van Assche, F., Clijsters, H., Effects of Metals on Enzyme Activity in Plants, Plant Cell Environ., 13, 195-206, 1990.
  • Panda, S.K., Choudhury, S., Chromium Stress in Plants, Braz. J. Plant Physiol., 17, 95-102, 2005.
  • Scoccianti, V., et al., Uptake and Toxicity of Cr(III) in Celery Seedlings, Chemosphere, 64, 1695-1703, 2006.
  • Gupta, S., et al., Chromium Increases Photosystem 2 Activity in Brassica juncea, Biol. Plant., 53, 100-104, 2009.
  • Panda, S.K., Mahapatra, S., Patra, I.I.K., Chromium Toxicity and Water Stress Simulation Effects in Intact Senescing Leaves of Green Gram (Vigna radiata L. Var Wilckzeck K851), pp.129-136, In: Panda, S.K., (Ed), Advances in Stress Physiology of Plants, Scientific Publishers, India, 2002.
  • Peralta, J.R., et al., Uptake and Effects of Five Heavy Metals on Seed Germination and Plant Growth in Alfalfa (Medicago sativa L.), B. Environ. Contam. Tox., 66, 727-734, 2001.
  • Karuppanapandian, T., Manoharan, K., Uptake and Translocation of Tri- and Hexa-Valent Chromium and Their Effects on Black Gram (Vigna mungo L. Hepper cv. Co4) Roots, J. Plant Biol., 51, 192-201, 2008.
  • Mcgrath, S.P., Chromium and Nickel, pp.152-178, In: Alloway, B.J., (Ed) Heavy Metal In Soils, Second Ed. Chapman and Hall, Great Britain, 1995.
  • Barcelo, J., et al., Water Relations of Chromium VI Treated Bush Bean Plants (Phaseolus vulgaris L. cv. Contender) Under Both Normal and Water Stress Conditions, J. Exp. Bot., 37, 178-187, 1986.
  • Pandey, V., et al., Chromium (VI) Induced Changes in Growth and Root Plasma Membrane Redox Activities in Pea Plants, Protoplasma, 235, 49-55, 2009a.
  • Castro, R.O., et al., Effects of Dichromate on Growth and Root System Architecture of Arabidopsis thaliana Seedlings, Plant Sci., 172, 684-691, 2007.
  • Pandey, V., et al., Antioxidative Responses in Relation to Growth of Mustard (Brassica juncea cv. Pusa Jaikisan) Plants Exposed to Hexavalent Chromium, Chemosphere, 61, 40-47, 2005.
  • Karunyal, S., et al., Effects of Tannery Effluent on Seed Germination, Leaf Area, Biomass and Mineral Content of Some Plants, Bioresource Technol., 47, 215-218, 1994.
  • Sharma, D.C., Sharma, C.P., Chromium Uptake and Its Effects on Growth and Biological Yield of Wheat, Cereal Res. Commun., 21, 317-321, 1993.
  • Radin, J.W., Boyer, J.S. Control of Leaf Expansion by Nitrogen Nutrition in Sunflower Plants: Role of Hydraulic Conductivity and Turgor, Plant Physiol., 69,
  • Tripathi, A.K., et al., Changes in Some Physiological and Biochemical Characters in Albizzia lebbek as Bio- Indicators of Heavy Metal Toxicity, J. Environ. Biol., 20, 93-98, 1999.
  • Bishnoi, N.R., et al., Effect of Chromium on Photosynthesis, Respiration and Nitrogen Fixation in Pea (Pisum sativum L.) Seedlings, J. Plant Physiol., 142, 25-30, 1993.
  • Subrahmanyam, D., Effects of Chromium Toxicity on Leaf Photosynthetic Characteristics and Oxidative Changes Photosynthetica, 46, 339-345, 2008. (Triticum aestivum L.),
  • Zurayk, R., et al., Common Hydrophytes as Bioindicators of Nickel, Chromium and Cadmium Pollution, Water Air Soil Poll., 127, 373-388, 2001.
  • Olguín, E.J., et al., The Effect of Both Different Light Conditions and The pH Value on The Capacity of Salvinia minima BAKER for Removing Cadmium, Lead and Chromium, Acta Biotechnol., 22, 121-131, 2002.
  • Dhir, B., et al., Physiological and Antioxidant Responses of Salvinia natans Exposed to Chromium- Rich Wastewater, Ecotox. Environ. Safe., 72, 1790- 1797, 2009.
  • Prado, C., et al., Uptake of Chromium by Salvinia minima: Effect on Plant Growth, Leaf Respiration and Carbohydrate Metabolism, J. Hazard. Mater., 177, 546- 553, 2010.
  • Zeid, I.M., Responses of Phaseolus vulgaris to Chromium and Cobalt Treatments, Biol. Plant., 44, 111-115, 2001.
  • Choudhury, S., Panda, S.K., Role of Salicylic Acid in Regulating Cadmium Induced Oxidative Stress in Oryza sativa L. Roots, Bulg. J. Plant Physiol., 30, 95- 110, 2004.
  • Panda, S.K., et al., Heavy Metals Induce Lipid Peroxidation and Affect Antioxidants in Wheat Leaves, Biol. Plant., 46, 289-294, 2003.
  • Rai, V., et al., Effect of Chromium Accumulation on Photosynthetic Pigments Oxidative Stress Defense System, Nitrate Reduction, Proline Level and Eugenol Content of Ocimum tenuiflorum L., Plant Sci., 167, 1159-1169, 2004.
  • Sinha, S., et al., Multivariate Modeling of Chromium- Induced Oxidative Stress and Biochemical Changes in Plants of Pistia stratiotes L., Ecotoxicology, 18, 555- 566, 2009.
  • Sharma, D.C., et al., Phototoxic Lesions of Chromium in Maize, Chemosphere, 51, 63-68, 2003.
  • Gopal, R., et al., Chromium Alters Iron Nutrition and Water Relations of Spinach, J. Plant Nutr. 32, 1551- 1559, 2009.
  • Hussain, M., et al., Effect of Lead and Chromium on Growth, Photosynthetic Pigments and Yield Components in Mash Bean [Vigna mungo (L.) Hepper], Pak. J. Bot., 38, 1389-1396, 2006.
  • Samantaray, S., Biochemical Responses of Cr-Tolerant and Cr-Sensitive Mung Bean Cultivars Grown on Varying Levels of Chromium, Chemosphere, 47, 1065- 1072, 2002.
  • Shanker, A.K., Physiological, Biochemical and Molecular Aspects of Chromium Toxicity and Tolerance in Selected Crops and Tree Species, PhD Thesis, Coimbatore: Tamil Nadu Agricultural University, India, 2003.
  • Vajpayee, P., et al., Chromium (VI) Accumulation Reduces Chlorophyll Biosynthesis, Nitrate Reductase Activity and Protein Content in Nymphaea alba L., Chemosphere, 41, 1075-1082, 2000
  • Vernay, P., et al., Interaction of Bioaccumulation of Heavy Metal Chromium With Water Relation, Mineral Nutrition and Photosynthesis in Developed Leaves of Lolium perenne L., Chemosphere, 68, 1563-1575, 2007.
  • Ilag, L.L., et al., Light Regulation of Chlorophyll Biosynthesis at the Level of 5-Aminolevulinate Formation in Arabidopsis, Plant Cell, 6, 265-275, 1994.
  • Schmidt, W., Influence of Chromium (III) on Root associated Fe (III) Reductase in Plantago lanceolata L., J. Exp. Bot., 47, 805-810, 1996.
  • Chatterjee, J., Chatterjee, C., Phytotoxicity of Cobalt, Chromium and Copper in Cauliflower, Environ. Pollut., 109, 69-74, 2000.
  • Dietz, K.-J., et al., Free Radicals and Reactive Oxygen Species as Mediator of Heavy Metal Toxicity in Plants, pp.73-79, In: Prasad, M.N.V., Hagemeyer, J., (Eds), Heavy Metal Stress in Plants: From Molecules to Ecosystem, Berlin, Springer, 1999.
  • Vranova, E., Signal Transduction During Oxidative Stress, J. Exp. Bot., 53, 1227-1236, 2002.
  • Foyer, C.H., Noctor, G., Redox Sensing and Signaling Associated with Reactive Oxygen in Chloroplasts, Peroxisomes and Mitochondria, Physiol. Plant., 119, 355-364, 2003.
  • Mithofer, A., et al., Biotic and Heavy Metal Stress Response in Plants: Evidence for Common Signals, FEBS Lett., 566, 1-5, 2004.
  • Moller, I.M., et al., Oxidative Modifications to Cellular Components in Plants, Ann. Rev. Plant Biol., 58, 459- 481, 2007.
  • Kaszycki, P., et al., Exogenously Applied Sulphate as a Tool to Investigate Transport and Reduction of Chromate in the Duckweed Spirodela polyrhiza, Plant Cell Environ., 28, 260-268, 2005.
  • Knight, H., Knight, M.R., Abiotic Stress Signaling Pathways: Specificity and Cross-Talk, Trends Plant Sci., 6, 262-267, 2001.
  • Mittler, R., Oxidative Stress, Trends Plant Sci., 7, 405- 410, 2002.
  • Sharma, S.S., Dietz, K.J., The Relationship Between Metal Toxicity and Cellular Redox Imbalance, Trends Plant Sci., 14, 43-50, 2008.
  • Hammond-Kosack, K.E., Jones, J.D.G., Resistance Gene-Dependent Plant Defense Responses, Plant Cell, 8, 1773-1791, 1996.
  • Pei, Z.M., et al., Calcium Channels Activated by Hydrogen Peroxide Mediate Abscisic Acid Signaling in Guard Cells, Nature, 406, 731-734, 2000.
  • Rock, M.L., et al., Hydrogen Peroxide Effects on Cr Oxidation State and Solubility in Four Diverse, Cr- Enriched Soils, Environ. Sci. Technol., 35, 4054-4059,
  • Vazquez, M.I.D., et al., Chromium VI Induced Structural Changes in Bush Bean Plants (Phaseolus vulgaris L.), Ann. Bot., 59, 427-438, 1987.
  • Shanker, A.K., Pathmanabhan, G., Speciation Dependent Antioxidative Response in Roots and Leaves of Sorghum (Sorghum bicolor (L.) Moench cv. CO27) Under Cr(III) and Cr(VI) Stress, Plant Soil, 265,
  • Del Rio, L.A., et al., Reactive Oxygen Species and Reactive Nitrogen Species in Peroxisomes. Production, Scavenging, and Role in Cell Signaling, Plant Physiol., 141, 330-335, 2006.
  • Halliwell, B., Gutteridge, J.M.C., Free Radicals in Biology and Medicine, Clarendon Press, Oxford, 2004.
  • Diwan, H., et al., Induction of Phytochelatins and Antioxidant Defence System in Brassica juncea and Vigna radiata in Response to Chromium Treatments, Plant Growth Regul., 61, 97-107, 2010.
  • Rauser, W.E., The Structure and Function of Metal Chelators Produced by Plants, Cell Biol. Biophys., 31, 19-48, 1999.
  • Clemens, S., Molecular Mechanisms of Plant Metal Tolerance and Homeostasis, Planta, 212, 475-486, 2001.
  • Yang, M.N., et al., Salicylic Acid Induce Aluminum Tolerance by Modulation of Citrate Efflux From Roots of Cassia tora L., Planta, 217, 168-174, 2003.
  • Wu, L.H., et al., Effects of EDTA and Low Molecular Weight Organic Acids on Soil Solution Properties of a Heavy Metal Polluted Soil, Chemosphere, 50, 819-822, 2003.
  • Hale, M.G., Griffin, G.J., Effect of Injury on Exudation from Immature and Mature Plant Fruits, Plant Physiol., Abstracts.13. 1974.
  • Caltado, D.A., et al., Organic Constituent and Complexation of Nickel (II), Cadmium (II) and Plutonium (VI) in Soybean Xylem Exudates, Plant Physiol., 86, 734-739, 1988.
  • Barlett, J.R., James, B.R., Mobility and Bioavailability of Chromium in Soils, pp.267-304, In: Nriagu, J.O., Nieboer, E., (Eds), Chromium in Natural and Human Environment, John Wiley And Sons Inc., New York, 1988.
  • Srivastava, S., et al., Fate of Trivalent Chromium in Presence of Organic Acids, Chem. Spec. Bioavailab., 10, 147-150, 1999.
  • Zeng, F.R., et al., Genotypic and Environmental Variation in Chromium, Cadmium and Lead Concentrations in Rice, Environ. Pollut., 153, 309-314, 2008.
  • Jean, L., et al., Effect of Citric Acid and EDTA on Chromium and Nickel Uptake and Translocation by Datura innoxia, Environ. Pollut., 153, 555-563, 2008.
  • Liszkay, A., et al., Production of Reactive Oxygen Intermediates (O2·-, H2O2, and OH) by Maize Roots and Their Role in Wall Loosening and Elongation Growth, Plant Physiol., 136, 3114-3123, 2004.
  • Noctor, G., Foyer, C.H., Ascorbate and Glutathione: Keeping Active Oxygen Under Control, Ann. Rev. Plant Physiol. Plant Mol. Biol., 49, 249-279, 1998.
  • Gupta, K.J., et al., In Higher Plants, Only Root Mitochondria, But Not Leaf Mitochondria Reduce Nitrite to NO, In Vitro and In Situ, J. Exp. Bot., 56, 2601-2609, 2005.
  • Kono, Y., Fridovich, I., Functional Significance of Manganese Catalase in Lactobacillus plantarum, J. Bacteriol., 155, 742-746, 1983.
  • Pekker, I., et al., Reactive Oxygen Intermediates and Glutathione Regulate The Expression of Cytosolic Ascorbate Peroxidase During Iron-Mediated Oxidative Stress in Bean, Plant Mol. Biol., 49, 429-438, 2002.
  • Dey, S.K., et al., Antioxidative Efficiency of Triticum aestivum L. Exposed to Chromium Stress, J. Environ. Biol., 30, 539-544, 2009.
  • Ganesh, K.S., Chromium Stress Induced Alterations in Biochemical and Enzyme Metabolism In Aquatic and Terrestrial Plants, Colloid. Surface. B., 63, 159-163, 2008.
  • Samantaray, S., et al., Induction, Selection and Characterization of Cr and Ni-Tolerant Cell Lines of Echinochloa colona (L.) In Vitro, J. Plant Physiol., 158, 1281-1290, 2001.
  • Willekens, H., et al., Catalase Is A Sink for H2O2 and Is Indispensable for Stress Defense in C-3 Plants, EMBOJ, 16, 4806-4816, 1997.
  • Verbruggen, N., Hermans, C., Proline Accumulation in Plants: A Review, Amino Acids, 35, 753-759, 2008.
  • Demirevska, K., et al., Response of Oryzacystatin I Transformed Tobacco Plants to Drought, Heat and Light Stress, J. Agron. Crop Sci., 196, 90-99, 2010.
  • Siripornadulsil, S., et al., Molecular Mechanisms of Proline-Mediated Tolerance to Toxic Heavy Metals in Transgenic Microalgae, Plant Cell, 14, 2837-2847, 2002.
  • Abraham, E., et al., Light-Dependent Induction of Proline Biosynthesis by Abscisic Acid and Salt Stress is Inhibited by Brassinosteroid in Arabidopsis, Plant Mol. Biol., 51, 363-372, 2003.
  • Yoshiba, Y., et al., Regulation of Levels of Proline as an Osmolyte in Plants Under Water Stress, Plant Cell Physiol., 38, 1095-1102, 1997.
  • Sinha, S., Gupta, A.K., Translocation of Metals From Fly Ash Amended Soil in The Plant of Sesbania cannabina L. Ritz: Effect on Antioxidants, Chemosphere, 61, 1204-1214, 2005.
  • Sinha, S., Saxena, R., Effect of Iron on Lipid Peroxidation, and Enzymatic and Non-Enzymatic Antioxidants and Bacoside, A Content in Medicinal Plant Bacopa monnieri L., Chemosphere, 62, 1340- 1350, 2006.
  • Ashraf, M., Foolad, M.R., Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance, Environ. Exp. Bot., 59, 206-216, 2007.
  • Molinari, H.B.C., et al., Evaluation of The Stress- Inducible Production of Proline in Transgenic Sugarcane (Saccharum Spp.): Osmotic Adjustment, Chlorophyll Fluorescence and Oxidative Stress, Physiol. Plant., 130, 218-229, 2007.
  • Ganesh, K.S., et al., Influence of Chromium Stress on Proline Accumulation in Soybean (Glycine max L. Merr.) Genotypes, Global J. Environ. Res., 3, 106-108, 2009.
  • Kagi, J.H.R., Overview of Metallothioneins, Method. Enzymol., 205, 613-626, 1991.
  • Labra, M., et al., Zea Mays L. Protein Changes in Response to Potassium Dichromate Treatments, Chemosphere, 62, 1234-1244, 2006.
  • Juszczuk, I.M., Rychter, A.M., Alternative Oxidase in Higher Plants. Acta Biochim. Pol., 50, 1257-1271,
  • Maxwell, D.P., et al., The Alternative Oxidase Lowers Mitochondrial Reactive Oxygen Production in Plant Cells, Proc. Nat. Acad. Sci. USA, 96, 8271-8276, 1999.
  • Vanlerberghe, G.C., Mcintosh, L., Alternative Oxidase: From Gene to Function, Ann. Rev. Plant Physiol. Plant Mol. Biol., 48, 703-734, 1997.
  • Rizhsky, L., et al., The Combined Effect of Drought Stress and Heat Shock on Gene Expression in Tobacco, Plant Physiol., 130, 1143-1151, 2002.
  • Castro-Guerrero, N.A., Enhanced Alternative Oxidase and Antioxidant Enzymes Under Cd2+ Stress in Euglena, J. Bioenerg. Biomembr., 40, 227-235, 2008.
  • Garmash, E.V., Golovko, T.K., Effect of Cadmium on Growth and Respiration of Barley Plants Grown Under Two Temperature Regimes, Russ. J. Plant Physiol., 56, 343-347, 2009.
  • Garcia-Hernandez, M., et al., Metallothioneins 1 and 2 Have Distinct But Overlapping Expression Patterns in Arabidopsis, Plant Physiol., 118, 387-397, 1998.
  • Lemaire, S., et al., Heavy-Metal Regulation of Thioredoxin Gene Expression in Chlamydomonas reinhardtii, Plant Physiol., 120, 773-778, 1999.
  • Xiang, C., Oliver, D.J., Glutathione Metabolic Genes Coordinately Respond to Heavy Metals and Jasmonic Acid in Arabidopsis, Plant Cell, 10, 1539-1550, 1998.
  • Cho, U.H., Park, J.O., Mercury-Induced Oxidative Stress in Tomato Seedlings, Plant Sci., 156, 1-6, 2000.
  • Didierjean, L., et al., Heavy Metal-Responsive Genes in Maize: Identification and Comparison of Their Expression upon Various Forms of Abiotic Stress, Planta, 199, 1-8, 1996.
  • Delhaize, E., et al., Effects of Cadmium on Gene Expression in Cadmium-Tolerant and Cadmium- Sensitive Datura innoxia Cells, Plant Mol. Biol., 12, 487-497, 1989.
  • Parsell, D.A., Lindquist, S., Heat Shock Proteins and Stress Tolerance, pp.457-494, In: Morimoto, R., Tissieres, A., Georgopoulos, C., (Eds), The Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbor Press, Cold Spring Harbor, New York, USA, 1994.
  • Downs, C.A., et al., The Chloroplast Small Heat-Shock Protein: Evidence For A General Role in Protecting Photosystem II Against Oxidative Stress and Photoinhibition, J. Plant Physiol., 155, 488-496, 1999.
  • Hamilton, E.W., Heckathorn, A., Mitochondrial Adaptations to NaCl Stress: Complex I is Protected by Anti-Oxidants and Small Heat Shock Proteins, Whereas Complex II is Protected by Proline and Betaine, Plant Physiol., 126, 1266-1274, 2001.
  • Neumann, D., How Does Armeria maritime Tolerate High Heavy Metal Concentrations, J. Plant Physiol., 146, 704-717, 1995.
  • Tseng, T.S., et al., The Heat-Shock Response in Rice Seedlings-Isolation, and Expression of cDNAs That Encode Class-I Low-Molecular-Weight Heat-Shock Proteins, Plant Cell Physiol., 34, 165-168, 1993.
  • Wollgiehn, R., Neumann, D., Metal Stress Response and Tolerance of Cultured Cells From Silene vulgaris and Lycopersicon peruvianum: Role of Heat Stress Proteins, J. Plant Physiol., 154, 547-553, 1999.
  • Goupil, P., et al., Expression of Stress-Related Genes in Tomato Plants Exposed to Arsenic and Chromium in Nutrient Solution, J. Plant Physiol., 166, 1446-1452, 2009.
  • Del Razo, L.M., et al., Stress Proteins Induced by Arsenic, Toxicol. App. Pharm., 177, 132-148. 2001.
  • Fagioni, M., et al., Proteomic Analysis of Multiprotein Complexes in the Thylakoid Membrane upon Cadmium Treatment, J. Proteome Res., 8, 310-326, 2009.
  • Baker, A.J.M., Brooks, R.R., Terrestrial Higher Plants Which Hyperaccumulate Metallic Elements: A Review of Their Distribution, Ecology and Phytochemistry, Biorecovery, 1, 81-126, 1989.