Atık Kızartma Yağı Biyodizelinin Performans, Emisyon ve Yanma Karakteristiklerinin Pamuk Yağı ve Aspir Yağı Biyodizelleri ile Karşılaştırılması

Bu çalışmada, atık kızartma yağından elde edilen biyodizel, tek silindirli direkt enjeksiyonlu bir motorda yakıt olarak kullanılmış, performans, yanma ve emisyon sonuçları petrol kökenli dizel yakıtı, pamuk yağı biyodizeli ve aspir yağı biyodizeli ile karşılaştırılmıştır. Deney sonuçlarına göre; atık kızartma yağından üretilen biyodizel, geleneksel dizel yakıtına göre motor performans parametrelerini düşürse de diğer biyodizel yakıtlarına göre daha iyi performans parametrelerine sebep olmuştur. Pamuk ve aspir biyodizeli ile benzer yakıt özellikleri göstermesi sayesinde, emisyon değerlerinde de dizel yakıta göre önemli iyileşmeler gözlemlenmiştir. Yanma karakteristikleri bakımından incelendiğinde, maksimum silindir basıncının atık kızartma yağı biyodizeli ile elde edildiği görülmektedir. Bu sayede de diğer biyodizellere göre daha yüksek performans değerlerine sahiptir. Biyodizel hammaddesi olarak tercih edilmesi durumunda diğer biyodizeller ile benzer sonuçların elde edileceği bu çalışmanın sonuçları ile ortaya konulmuştur.

Comparison of Performance, Emission and Combustion Characteristics of Waste Frying Oil Biodiesel with Cotton Oil and Safflower Oil Biodiesels

In this study, biodiesel obtained from waste frying oil was used as fuel in a single cylinder direct injection engine, the performance, combustion and emission results were compared with petroleum-based diesel fuel, cotton oil biodiesel and safflower oil biodiesel. According to the results of the experiment; although biodiesel produced from waste frying oil reduced engine performance parameters compared to conventional diesel fuel, it has caused better performance parameters compared to other biodiesel fuels. Due to its similar fuel characteristics with cotton and safflower biodiesel, significant improvements were observed in emission values compared to diesel fuel. When examined in terms of combustion characteristics, it is seen that the maximum cylinder pressure is obtained with waste frying oil biodiesel. Thus, it has higher performance values than other biodiesels. It is demonstrated by the results of this study that if it is preferred as biodiesel feedstock, similar results will be obtained with other biodiesel fuels.

___

  • Arce, P. F., Guimarães, D. H., de Aguirre, L. R. 2019. Experimental data and prediction of the physical and chemical properties of biodiesel. Chemical Engineering Communications, 206(10), 1273-1285.
  • Moser, B. R. 2009. Biodiesel production, properties, and feedstocks. In Vitro Cellular & Developmental Biology-Plant, 45(3), 229-266.
  • Ahmia, A. C., Danane, F., Bessah, R., Boumesbah, I. 2014. Raw material for biodiesel production. Valorization of used edible oil. Revue des Energies Renouvelables, 17(2), 335-343.
  • Efe, Ş., Ceviz, M. A., Temur, H. 2018. Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine. Renewable Energy, 119, 142-151.
  • Can, Ö., Öztürk, E., Yücesu, H. S. 2017. Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine. Renewable Energy, 109, 73-82.
  • Swaminathan, C., Sarangan, J., Michael, B. S. 2019. Investigation of performance and emission characteristics of IC engine using sunflower oil methyl ester as fuel with oxygenated additive and EGR. Biofuels, 10(5), 583-589.
  • Ahranjani, P. E., Kazemeini, M., Arpanaei, A. 2019. Green Biodiesel Production from Various Plant Oils Using Nanobiocatalysts Under Different Conditions. BioEnergy Research, 1-11.
  • Erdoğan, S., Aydın, S., Balki, M. K., Sayin, C. 2020. Operational evaluation of thermal barrier coated diesel engine fueled with biodiesel/diesel blend by using MCDM method base on engine performance, emission and combustion characteristics. Renewable Energy, 151, 698-706.
  • Máquina, A. D. V., Sitoe, B. V., Buiatte, J. E., Santos, D. Q., Neto, W. B. 2019. Quantification and classification of cotton biodiesel content in diesel blends, using mid-infrared spectroscopy and chemometric methods. Fuel, 237, 373-379.
  • Şanli, B. G., Uludamar, E., Özcanli, M. 2019. Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel, 258, 116116.
  • Ge, J. C., Kim, H. Y., Yoon, S. K., Choi, N. J. 2020. Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine. Fuel, 260, 116326.
  • Eryılmaz, T., Cesur, C., Yeşilyurt, M., Aydın, E. 2014. Fuel Properties of Biodiesel Produced from Balci Variety Oil of Safflower (Carthamus tinctorious L.). International Journal of Automotive Engineering and Technologies, 3(2), 74-78.
  • Selvaraj, R., Praveenkumar, R., Moorthy, I. G. 2019. A comprehensive review of biodiesel production methods from various feedstocks. Biofuels, 10(3), 325-333.
  • Azimov, U., Ngu, D. H. Multiparametric engine optimization with application of biodiesel blends for better performance and lower exhaust gas emissions. International Journal of Automotive Engineering and Technologies, 7(2), 88-98.
  • Veinblat, M., Baibikov, V., Katoshevski, D., Wiesman, Z., Tartakovsky, L. 2018. Impact of various blends of linseed oil-derived biodiesel on combustion and particle emissions of a compression ignition engine–A comparison with diesel and soybean fuels. Energy conversion and management, 178, 178-189.
  • Canakci, M., Sanli, H. 2008. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of industrial microbiology & biotechnology, 35(5), 431-441.
  • Şanlı, H. 2019. Influences of biodiesel fuels produced from highly degraded waste animal fats on the injection and emission characteristics of a CRDI diesel engine. International Journal of Automotive Engineering and Technologies, 8(1), 11-21.
  • Aksoy, F., Uyumaz, A., Boz, F., Yılmaz, E. 2017. Experimental investigation of neutralized waste cooking oil biodiesel and diesel fuels in a direct injection diesel engine at different engine loads. International Journal of Automotive Science and Technology, 1(1), 7-15.
  • Keskin, A. 2017. Pamuk Yağı Biyodizeli-Eurodizel Karışımlarının Tam Yükte Yanma, Performans ve Emisyonlara Etkisinin Deneysel Olarak İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(2), 797-809.
  • Aydogan, H. 2015. Performance, emission and combustion characteristics of bioethanol-biodiesel-diesel fuel blends used in a common rail diesel engine. J. of Thermal Science and Technology, 35(2), 19-27.
  • Özçelik, A. E. 2017. Investigation of the effects of safflower biodiesel blends with Eurodiesel fuel on engine performance and emissions in common-rail diesel engine. Ege Üniversitesi Ziraat Fakültesi Dergisi, 54(1), 9-16.
  • Aydın, F., Öğüt, H. 2017. Effects of using ethanol-biodiesel-diesel fuel in single cylinder diesel engine to engine performance and emissions. Renewable Energy, 103, 688-694.
  • Çelebi, Y., Aydın, H. 2018. Investigation of the effects of butanol addition on safflower biodiesel usage as fuel in a generator diesel engine. Fuel, 222, 385-393.
  • Oğuz, H., Öğüt, H., Aydın, F., Ciniviz, M., Eryılmaz, T. 2019. Investigation of engine performance and kit design for the usage of safflower oil as in diesel engine. Renewable Energy, 143, 692-702.
  • Aydın, S. 2020. Detailed evaluation of combustion, performance and emissions of ethyl proxitol and methyl proxitol-safflower biodiesel blends in a power generator diesel engine. Fuel, 270, 117492.
  • Keskin, A., Gürü, M., Altiparmak, D., Aydin, K. 2008. Using of cotton oil soapstock biodiesel–diesel fuel blends as an alternative diesel fuel. Renewable Energy, 33(4), 553-557.
  • Subbarayan, M. R., Kumaar, J. S., Padmanaban, M. A. 2016. Experimental investigation of evaporation rate and exhaust emissions of diesel engine fuelled with cotton seed methyl ester and its blend with petro-diesel. Transportation Research Part D: Transport and Environment, 48, 369-377.
  • Nabi, M. N., Rahman, M. M., Akhter, M. S. 2009. Biodiesel from cotton seed oil and its effect on engine performance and exhaust emissions. Applied thermal engineering, 29(11-12), 2265-2270.
  • Sundar, K., Udayakumar, R. 2020. Comparative evaluation of the performance of rice bran and cotton seed biodiesel blends in VCR diesel engine. Energy Reports, 6, 795-801.
  • Uyumaz, A., Boz, F., Baydır, Ş. A. 2018. Direkt enjeksiyonlu bir dizel motorunda atık zeytinyağı biyodizelinin yanma, performans ve emisyon karakteristikleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(1), 55-66.
  • Calam, A. Atık Kızartma Yağı Biyodizeliyle Çalışan Direkt Enjeksiyonlu Bir Dizel Motorun Yanma Performans ve Emisyon Özellikleri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 22(64), 97-106.
  • Rounce, P., Tsolakis, A., York, A. P. E. 2012. Speciation of particulate matter and hydrocarbon emissions from biodiesel combustion and its reduction by aftertreatment. Fuel, 96, 90-99.
  • Su, J., Zhu, H., Bohac, S. V. 2013. Particulate matter emission comparison from conventional and premixed low temperature combustion with diesel, biodiesel and biodiesel–ethanol fuels. Fuel, 113, 221-227.
  • Lesnik, l., Iljaz, J., Hribernik, A., Kegl, B., 2014. Numerical and experimental study of combustion, performance and emission characteristics of a heavy-duty DI diesel engine running on diesel, biodiesel and their blends. Energy Conversion and Management, 81, 534-546.
  • Aksoy, F., Akay, F., Baydır, Ş. A., Solmaz, H., Yılmaz, E., Uyumaz, A., Calam, A. 2019. An Experimental Investigation on The Effects of Waste Olive Oil Biodiesel on Combustion, Engine Performance and Exhaust Emissions. International Journal of Automotive Engineering and Technologies, 8(3), 103-116.
  • Kegl, B., Kegl, M., Pehan, S. 2008. Optimization of a fuel injection system for diesel and biodiesel usage. Energy & Fuels, 22(2), 1046-1054.
  • Fattah, I. M. R., Masjuki, H. H., Kalam, M., Wakil, M. A., Ashraful, A. M., Shahir, S. A. 2014. Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors. Energy Conversion and Management, 83, 232-240.
  • Parekh, P. R., Goswami, J. 2012. Emission and performance of diesel engine using waste cooking oil bio diesel blends-review. Journal of Engineering Research and Studies, 3(1), 34-39.
  • Tan, P., Hu, Z., Lou, D., Li, Z. 2012. Exhaust emissions from a light-duty diesel engine with Jatropha biodiesel fuel. Energy, 39(1), 356-362.
  • Mofijur, M., Masjuki, H. H., Kalam, M. A., Atabani, A. E., Arbab, M. I., Cheng, S. F., Gouk, S. W. 2014. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine. Energy Conversion and Management, 82, 169-176.
  • Dhar, A,. Kevin, R., Agarwal, A. K. 2012. Production of biodiesel from high-FFA neem oil and its performance, emission and combustion characterization in a single cylinder DICI engine. Fuel Processing Technology, 97, 118-129.
  • Simsek, S. 2020. Effects of biodiesel obtained from Canola, sefflower oils and waste oils on the engine performance and exhaust emissions. Fuel, 265, 117026.