Bu çalışmada, üçgen örgülü fotonik kristal fiberlerin (PCFs) dispersiyon özellikleri, sabit hava boşluk çapına (d) ve sabit adım uzunluğuna (Λ) sahip yapılar için karşılaştırılmalı olarak incelendi. Bu çalışmada ele alınan fotonik kristal fiberler (PCFs), silika arka alanın merkezinde bir tek eksik hava boşluğundan oluşan öze ve özün çevresinde hava boşluklarının 4 halkasına sahip düzenli üçgen örgülü bir fotonik kristal yeleğe sahiptir. Simülasyonlar, 0.1-0.7’lik aynı d/Λ aralığında sırasıyla sabit çap (d=0.84 μm) ve sabit adım uzunluğu (Λ=4.2 μm) için yapıldı. Simülasyonlardan, Λ’daki bir değişimin fotonik kristal fiberin dispersiyon davranışını d’deki bir değişime göre çok daha çarpıcı bir biçimde etkilediği bulundu.

Comparative study on solid core photonic crystals fibers dispersion for fixed hole diameter and for fixed pitch length

In this study, the dispersion properties of the PCFs with triangular lattice for both the structures with a fixed hole-diameter (d) and with a fixed pitch length (Λ) are investigated comparatively. The PCFs studied in this work have a core formed a missing air-hole at the center in a silica background and a photonic crystal cladding with a regular triangular lattice having 4-rings of air-holes around the core. Simulations are executed for both fixed diameter (d=0.84 μm) and for the fixed pitch length (Λ=4.2 μm) separately for the same d/Λ interval from 0.1 to 0.7. It is found from the simulations that a change in Λ affects the dispersion behavior of the PCF more dramatically relative to a change in d.

___

  • Knight J. C., Birks T. A., Russell P. St. J. and Atkin D. M., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21, 1996, 1547-1549.
  • Knight J. C., Broeng J., Birks T. A. and Russell P. St. J., Photonic Band Gap Guidance in Optical Fibers, Science 282, 1998, 1476-1478.
  • Birks T. A., Knight J. C. and Russell P. St. J., Endlessly single-mode photonic crystal fiber, Opt. Lett. 22, 1997, 961-963.
  • Xiao L., Jin W. and Demokan M. S., Photonic crystal fibers confining light by both index-guiding and bandgap-guiding: hybrid PCFs, Opt. Exp. 15, 2007, 15637-15647.
  • J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell and P. D. de Sandro, Large mode area photonic crystal fibre, Electron. Lett. 34, 1998, 1347-1348.
  • Wadsworth W. J., Percival R., Bouwmans G., Knight J. C. and Russell P. St. J., High power air-clad photonic crystal fibre laser, Opt. Exp. 11, 2003, 48-53.
  • Ortigosa-Blanch A., Knight J. C., Wadsworth W. J., Arriaga J., Mangan B. J., Birks T. A. and Russell P. St. J., Highly birefringent photonic crystal fibers, Opt. Lett. 25, 2000, 1325-1327.
  • Petropoulos P., Monro T. M., Belardi W., Furusawa K., Lee J. H. and Richardson D. J., 2R-regenerative all-optical switch based on a highly nonlinear holey fiber, Opt. Lett. 26, 2001, 1233-1235.
  • Birks T. A., Mogilevstev D., Knight J. C. and.Russell P. St. J, IEEE Photon. Technol. Lett. 11, 1999, 674-676.
  • Kejalakshmy N., Rahman B. M. A., Kabir A. K. M. S., Rajarajan M. and Grattan K. T. V., Single mode operation of photonic crystal fiber using a full vectorial finite element method, Proc. of SPIE 6588, 65880T, 2007.
  • Chen Z., Hou J., Xi X., Sun G. and Jiang Z., Endlessly single-mode operation of highly nonlinear photonic crystal fibers by controlled hole collapse, Opt. Commun. 283, 2010, 4645-4648.
  • Mortensen N. A., Nielson M. D., Folkenberg J. R., Petersson A. and Simonsen H. R., Improved large-mode-area endlessly single-mode photonic crystal fibers, Opt. Lett. 28, 2003, 393-395.
  • Broeng J., Magilevstev D., Barkou S. E. and Bjarklev A., Photonic Crystal Fibers: A New Class of Optical Waveguides, Optical Fiber Technol. 5, 1999, 305-330.
  • Koshiba M. and Saitoh K., Applicability of classical optical fiber theories to holey fibers, Opt. Lett. 29, 2004, 1739-1741.
  • Mortensen N. A., Folkenberg J. R., Nielson M. D. and Hansen K. P., Modal cutoff and the V parameter in photonic crystal fibers, Opt. Lett. 28, 2003, 1879-1881.
  • Chen M. and Xie S., New nonlinear and dispersion flattened photonic crystal fiber with low confinement loss, Opt. Commun. 281, 2008, 2073-2076.
  • Gundu K. M., Kolesik M., Moloney J. V., and Lee K. S.,
  • Ultra-flattened-dispersion
  • selectively liquid-filled photonic crystal fibers,
  • Opt. Express 14, 2006, 6870-6878.
  • Reeves W. H., Knight J. C., Russell P. St. J., and Roberts P. J., Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express 10, 2002, 609-613.
  • Ferrando K. M., Silvestre E., Andres P., Miret J. J. and Andres M. V., Designing the properties of dispersion-flattened photonic crystal fibers, Opt. Express 9, 2001, 687-697.
  • Shen L. P., Huang W. P., and Jian S. S., Design of photonic crystal fibers for dispersion-related applications, J. Lightwave Technol. 21, 2003, 1644-1651.
  • Hoo Y. L., Jin W., Ju J., Ho H. L. and Wang D. N., Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion, Opt. Commun. 242, 2004, 327-332.
  • Arriaga J., Knight J. C. and Russell P. St. J., Modeling the propagation of light in photonic crystal fibers, Physica D-Nonlinear Phenomena 189, 2004, 100-106.
  • Knight J. C., Birks T. A., Russell P. St. J. and de Sandra J. P., Properties of photonic crystal fiber and the effective index model, J. Opt. Soc. Am. A 15, 1998, 748-752.
  • Monro T. M., Richardson D. J., Broderick N. G. R. and Bennet P. J.,Holey optical fibers: an efficient modal model, J. Lightwave Technol. 17, 1999, 1093-1102.
  • White T. P., McPhedran R. C., de Sterke C. M., Botten L. C. and Steel M. J., Confinement losses in microstructured optical fibers, Opt. Lett. 26, 2001, 1660-1662.
  • Wang Z., Guobin R., Shuqin L. and Shuisheng J., Supercell lattice method for photonic crystal fibers, Opt. Express 11, 2003, 980-991.
  • Riishede J., Mortensen N. A. and Laegsgaard J., A 'poor man's approach' to modelling micro-structured optical fibres, J. Optics A-Pure and Appl. Optics 5, 2003, 534-538.
  • Rahman B. M. A., Kabir A. K. M. S., Rajarajan M. and Grattan K. T. V., Finite element modal solutions of planar photonic crystal fibers with rectangular air-holes, Opt. and Quantum Electron. 37, 2005, 171-183.
  • Fogli F., Saccomandi L., Bassi P., Bellanca G. and Trillo S., Full vectorial BPM modeling of Index-Guiding Photonic Crystal Fibers and Couplers, Opt. Express 10, 2002, 54-59.
  • Saitoh K. and Koshiba M., Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window, Opt. Express 12, 2004, 2027-2032.
  • RSoft Design Group, www.rsoftdesign.com
  • Bjarklev A., Broeng J. and Bjarklev A. S., Photonic Crsytal Fibres (Kluwer Academic Publishers, Dordreeht, 2003.
  • Kerbage C. and Eggleton B., Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber, Opt. Express 10, 2002, 246-255.
  • Witkowska A., Lai K., Leon-Saral S. G., Wadsworth W. J. and Birks T. A., All-fiber anamorphic core-shape transitions, Opt. Lett. 31, 2006, 2672-2674.
  • Witkowska A., Leon-Saval S. G., Pham A. and Birks T. A., All-fiber LP11 mode convertors, Opt. Lett. 33, 2008, 306-308.
  • Lee H. W., Schmidt M. A., Tyagi H. K., Sempere L. P. and Russell P. St. J., Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber, Appl. Phys. Lett. 93, 2008, 111102.
  • Ju J., Xuan H. F., Jin W., Liu S. and Ho H. L., Selective opening of airholes in photonic crystal fiber, Opt. Lett. 35, 2010, 3886-3888.