ZİRKONYA TAKVİYELİ HİDROKSİAPATİT (HA) BAZLI BİYOAKTİF HİBRİD KAPLAMALARIN KOROZYON DUYARLILIKLARI

Titanyum (Ti) ve alaşımları sahip oldukları düşük elastik modül, yüksek dayanım, iyi biyouyumluluk ve korozyona karşı gelişmiş dirençleri nedeniyle implant uygulamalarında en sık kullanılan metalik biyomalzemelerdir. Bu çalışmada; ticari saflıktaki titanyum (CP Ti) altlıklar üzerine sol‐jel tekniği kullanılarak hidroksiapatit (HA: Ca5(PO4)3(OH)) bazlı zirkonya (ZrO2) katkılı biyoaktif hibrid kaplamalar ile kaplanması ve bu kaplamaların in-vitro ortamlardaki elektrokimyasal korozyon duyarlılıkları araştırılmıştır. Kaplamaların korozyon duyarlılıkları potansiyodinamik polarizasyon (PDS) testleri ile belirlenmiştir. Karakterizasyon çalışmalarında XRD, SEM ve EDS cihazları kullanılmıştır. Elde edilen bulgular HA içerisine katılan ZrO2 partiküllerinin implantın yük taşıma kapasitelerini artırmakla birlikte kaplanmamış numunelere oranla yüzey pasivizasyon özelliklerini iyileştirdiği görülmüştür.

___

  • 1. Sánchez-Hernández, Z. E., Domínguez-Crespo, M. A., Torres-Huerta, A. M., Onofre-Bustamante, E., Andraca Adame, J. and Dorantes-Rosales, H., (2014). Improvement of adhesion and barrier properties of biomedical stainless steel by deposition of YSZ coatings using RF magnetron sputtering. Materials Characterization, Volume:91, pp:50–57.
  • 2. Im, K., Lee, S., Kim, K. and Lee, Y., (2007). Improvement of bonding strength to titanium surface by sol – gel derived hybrid coating of hydroxyapatite and titania by sol – gel Process, Surface and Coatings Technology, Volume:202, Number:4-7, pp:1135–1138.
  • 3. Qu, J., Lu, X., Li, D., Ding, Y., Leng, Y., Weng, J., Qu, S., Feng, B. And Watari, F., (2011). Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. Journal of Biomedical Materials Research - Part B Applied Biomaterials, Volume:97 B(1), Number:1, pp:40–48.
  • 4. Kim, H. W., Kim, H. E., Salih, V. and Knowles, J. C., (2005). Hydroxyapatite and titania sol-gel composite coatings on titanium for hard tissue implants; mechanical and in vitro biological performance. Journal of Biomedical Materials Research - Part B Applied Biomaterials, Volume:72(1), Number:1, pp:1–8.
  • 5. Koch, C. F., Johnson, S., Kumar, D., Jelinek, M., Chrisey, D. B., Doraiswamy, A., Jin, C., Narayan, R.J. and Mihailescu, I. N., (2007). Pulsed laser deposition of hydroxyapatite thin films. Materials Science and Engineering C, Volume:27(3), Number:3, pp:484–494.
  • 6. Nelea, V., Morosanu, C., Iliescu, M. and Mihailescu, I. N., (2003). Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surface and Coatings Technology, Volume:173, Number:2–3, pp:315–322.
  • 7. Lee, H. U., Jeong, Y. S., Park, S. Y., Jeong, S. Y., Kim, H. G. and Cho, C. R., (2009). Surface properties and cell response of fluoridated hydroxyapatite/TiO2 coated on Ti substrate. Current Applied Physics, Volume:9, Number:2, pp:528–533.
  • 8. Billotte, W. G., (2000). Ceramic Biomaterials. In J. D. Bronzino (Ed.), Biomedical Engineering Handbook (Second Edi, pp. 642–675). Florida: Boca Raton: CRC Press LLC.
  • 9. Murugan, R. and Ramakrishna, S., (2005). Development of nanocomposites for bone grafting. Composites Science and Technology, Volume:65, Number:15–16 SPEC. ISS., pp:2385–2406.
  • 10. Bogdanoviciene, I., Beganskiene, A., Tõnsuaadu, K., Glaser, J., Meyer, H.-J. and Kareiva, A., (2006). Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing. Materials Research Bulletin, Volume:41, Number:9, pp:1754–1762.
  • 11. Li, H., Khor, K. A., Kumar, R. and Cheang, P., (2004). Characterization of hydroxyapatite/nano-zirconia composite coatings deposited by high velocity oxy-fuel (HVOF) spray process. Surface and Coatings Technology, Volume:182, Number:2–3, pp:227–236.
  • 12. Fu, L., Khor, K. A. and Lim, J. P., (2000). Yttria stabilized zirconia reinforced hydroxyapatite coatings. Surface and Coatings Technology, Volume:127, Number:1, pp:66–75.
  • 13. Fu, L., Khor, K. A. and Lim, J. P., (2001). Processing, microstructure and mechanical properties of yttria stabilized zirconia reinforced hydroxyapatite coatings. Materials Science and Engineering A, Volume:316, Number:1–2, pp:46–51.
  • 14. Manicone, P. F., Rossi Iommetti, P. and Raffaelli, L., (2007). An overview of zirconia ceramics: Basic properties and clinical applications. Journal of Dentistry, Volume:35, Number:11, pp:819–826.
  • 15. Piconi, C. and Maccauro, G., (1999). Zirconia as a ceramic biomaterial. Biomaterials, Volume:20, Number:1, pp:1–25.
  • 16. Vigolo, P., Fonzi, F., Majzoub, Z. and Cordioli, G., (2005). An in vitro evaluation of ZiReal abutments with hexagonal connection : in original state and following abutment preparation. The International Journal of Oral & Maxillofacial Implants, Volume:20, Number:1, pp:108–114.
  • 17. Shojaee, P. and Afshar, A., (2015). Effects of zirconia content on characteristics and corrosion behavior of hydroxyapatite/ZrO2 biocomposite coatings codeposited by electrodeposition. Surface and Coatings Technology, Volume:262, Number:3, pp:166–172.
  • 18. Balamurugan, A., Balossier, G., Kannan, S., Michel, J., Faure, J. and Rajeswari, S., (2007). Electrochemical and structural characterisation of zirconia reinforced hydroxyapatite bioceramic sol–gel coatings on surgical grade 316L SS for biomedical applications. Ceramics International, Volume:33, Number:4, pp:605–614.
  • 19. Salehi, S. and Fathi, M. H., (2010). Preparation of sol-gel derived HydroxyapatitelYttria stabilized zirconia nanocomposite coatings on 316 L stainless steel. In Proceedings of the 17th Iranian Conference of Biomedical Engineering, pp: 3–4.
  • 20. Salehi, S. and Fathi, M. H., (2010). Fabrication and characterization of sol-gel derived hydroxyapatite/zirconia composite nanopowders with various yttria contents. Ceramics International, Volume:36, Number:5, pp:1659–1667.
  • 21. Salehi, S. and Fathi, M. H., (2011). Elaboration of Sol-Gel Derived Hydroxyapatite / Yttria Stabilized Zirconia Composite Coatings Obtained for Biomedical Application. Defect and Diffusion Forum, Volume:312–315, pp:894–899.
  • 22. Family, R., Solati-Hashjin, M., Nik, S. N. and Nemati, A., (2012). Protection of titanium metal by nanohydroxyapatite coating with zirconia and alumina second phases. Protection of Metals and Physical Chemistry of Surfaces, Volume:48, Number:6, pp:688–691.
  • 23. Galvele, J.R. and Duffo, G. S., (1997). Calculation of the Surface Self-Diffusion Coefficient, Ds, Induced by the Exchange Current Density, Io. Application to Stress Corrosion Cracking. Corrosion Science, Volume:39, Number:3, pp:605–608.
  • 24. Büyüksağiş, A., (2010). The Coating of Hydroxyapatite ( HAP ) on 316L Stainless Steel and Ti6Al4V Alloy use by Sol-Gel Method. Electronic Journal of Machine Technologies, Volume:7, Number:1, pp:1–11.
Engineering Sciences-Cover
  • Başlangıç: 2009
  • Yayıncı: E-Journal of New World Sciences Academy