BİNA TASARIM SÜRECİNDE ENERJİ VERİMLİLİĞİ OPTİMİZASYONU İÇİN BİR MODEL VE YAZILIM GELİŞTİRİLMESİ: ANKARA’DA BİR UYGULAMA

Binalar dünyada ve Ülkemizde tüketilen enerjinin yaklaşık %40’ından sorumludur. Enerjisinin büyük kısmını ithal eden bir ülke olarak binaların enerji tüketimi ve çevresel etkilerinin azaltılmasının çok önemli iki hedef olduğu açıktır. Bunlara ek olarak serbest piyasada büyük önem arz eden ilk yatırım maliyetinin göz önüne alınmasıyla, üç amaçlı ve standart bir binada kullanılan sistemleri kapsayan çok amaçlı bir bina optimizasyon problemi ortaya çıkmıştır. Çözümü oldukça zor olan söz konusu problem için, inşaat sürecinin başında, karar verici için yol gösterici olacak bir model ve iki yazılım geliştirilmiştir. Bina Enerji Tüketimi Hesaplama Programı (BETH) kullanıcı tarafından tanımlanan parametre ve değişkenlere göre binanın yıllık enerji tüketimi, ilk yatırım maliyeti ve yıllık CO2 emisyonu değerini hesaplamaktadır. Bina Enerji Optimizasyon Programı (BEOP) ise çok amaçlı optimizasyon problemlerinin çözümünde kullanılan genetik algoritma temelli bir yazılımdır. Geliştirilen model ve yazılımlar örnek bir bina için uygulanmıştır. Sonuçlar model ve yazılımların kapsamlı ve değişik bina optimizasyon problemi için uygulanabilir olduğunu göstermiştir. 

___

  • Diakaki, C., E. Grigoroudis, and D. Kolokotsa, Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy and Buildings, 2008. 40(9): p. 1747-1754.
  • Nguyen, A.T., S. Reiter, and P. Rigo, A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 2014. 113: p. 1043-1058.
  • Chantrelle, F.P., et al., Development of a multicriteria tool for optimizing the renovation of buildings. Applied Energy, 2011. 88(4): p. 1386-1394.
  • Machairas, V., A. Tsangrassoulis, and K. Axarli, Algorithms for optimization of building design: A review. Renewable & Sustainable Energy Reviews, 2014. 31: p. 101-112.
  • Kolokotsa, D., et al., Decision support methodologies on the energy efficiency and energy management in buildings. Advances in Building Energy Research, 2009. 3(1): p. 121-146.
  • Diakaki, C., et al., A multi-objective decision model for the improvement of energy efficiency in buildings. Energy, 2010. 35(12): p. 5483-5496.
  • Juan, Y.K., et al., GA-based decision support system for housing condition assessment and refurbishment strategies. Automation in Construction, 2009. 18(4): p. 394-401.
  • Hamdy, M., A. Hasan, and K. Siren, Applying a multi-objective optimization approach for Design of low-emission cost-effective dwellings. Building and Environment, 2011. 46(1): p. 109-123.
  • Fesanghary, M., S. Asadi, and Z.W. Geem, Design of low-emission and energy-efficient residential buildings using a multi-objective optimization algorithm. Building and Environment, 2012. 49: p. 245-250.
  • Asadi, E., et al., Multi-objective optimization for building retrofit strategies: A model and an application. Energy and Buildings, 2012. 44: p. 81-87.
  • Evins, R., A review of computational optimisation methods applied to sustainable building design. Renewable & Sustainable Energy Reviews, 2013. 22: p. 230-245.
  • Malatji, E.M., J.F. Zhang, and X.H. Xia, A multiple objective optimisation model for building energy efficiency investment decision. Energy and Buildings, 2013. 61: p. 81-87.
  • Karmellos, M., A. Kiprakis, and G. Mavrotas, A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies. Applied Energy, 2015. 139: p. 131-150.
  • Manzano-Agugliaro, F., et al., Optimization methods applied to renewable and sustainable energy: A review. Renewable & Sustainable Energy Reviews, 2011. 15(4): p. 14p.
  • Wong Nyuk, H. and S. Li, Facade design optimization for naturally ventilated residential buildings in Singapore. Energy & Buildings, 2007. 39(8): p. 8p.
  • Sproul, A.B. and D. Jacob, Design optimisation for a low energy home in Sydney. Energy & Buildings, 2011. 43(7): p. 10p.
  • Haase, M. and M. Perino, Optimizing the configuration of a facade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective. Applied Energy, 2013. 108: p. 13p.
  • Kalyanmoy Deb, A.P., Sameer Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002. 6(2): p. 182.
  • Attia, S., Computational optimization zero energy building design: interviews with 28 international experts. International energy agency (IEA) task 40: towards net zero energy buildings subtask B. Louvain la Neuve. Université Catholique de Louvain, 2012.
  • Güğül, G.N., Ankara’da Müstakil Bir Konutun Nihai Enerji Tüketimini En Aza İndirebilmenin Yollarının Araştırılması ve Tekno-Ekonomik Değerlendirilmesi. Hacettepe Üniversitesi Doktora Tezi, 2016.
  • Ari, I. and M. Aydinalp Koksal, Carbon dioxide emission from the Turkish electricity sector and its mitigation options. Energy Policy, 2011. 39(10): p. 6120-6135.
Engineering Sciences-Cover
  • Başlangıç: 2009
  • Yayıncı: E-Journal of New World Sciences Academy