NANO SİLİKA’NIN BETON BASINÇ DAYANIMINA ETKİSİNİN İNCELENMESİ

Bu çalışmada Nano SiO2’nin betonların basınç dayanımına olan etkisi çok yönlü olarak incelenmiştir. Dünyada en çok kullanılan yapı malzemesi olan beton, gün geçtikçe gelişmekte ve yenilenmektedir. Bilimsel çalışmalar çimentonun yerini alacak alternatifler ararken, bir yandan da çimentonun performansını geliştirmek için yeni katkılar üretmektedir. Nano Silika (SiO2) betonun çeşitli özelliklerini iyileştirmek amacıyla beton bünyesinde çimentoyla ikame edilerek denenmekte, özellikle yüksek dayanımlı betonlarda matris özellikleri üzerinde çeşitli etkiler yapmaktadır.

___

  • 1. Aitcin, P.C., (2000). Cements of Yesterday and Today-Concrete of Tomorrow. Cem. Concr. Res., Vol:30, No:9, pp:1349–1359.
  • 2. Sanchez, F. and Sobolev, K., (2010). Nanotechnology in Concrete-A review, Constr. Build. Mater., Vol:24, No:11, pp:2060–2071.
  • 3. Singh, L.P., Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M., and Ahalawat, S., (2013). Beneficial role of Nanosilica in Cement Based Materials-A Review, Constr. Build. Mater., Vol:47, pp:1069–1077.
  • 4. Hanus, M.J. and Harris, A.T., (2013). Nanotechnology Innovations for the Construction Industry, Prog. Mater. Sci., Vol:58, No:7, pp:1056–1102.
  • 5. Zhu, W., Bartos, P.J.M., and Porro, A., (2004). Application of Nanotechnology in Construction Summary of a State-of-the-art report, Mater. Struct., Vol:37, November, pp:649–658.
  • 6. Norhasri, M.S.M., Hamidah, M.S., and Fadzil, A.M., (2017). Applications of Using Nano Material in Concrete: A review, Constr. Build. Mater., Vol:133, pp:91–97.
  • 7. Kumari, K., et al., (2016). Nanoparticles for Enhancing Mechanical Properties of Fly Ash Concrete, Mater. Today Proc., vol:3, no:6, pp:2387–2393.
  • 8. Behfarnia, K. and Salemi, N., (2013). The effects of Nano-silica and Nano-alumina on Frost Resistance of Normal Concrete, Constr. Build. Mater., Vol:48, pp:580–584.
  • 9. Oltulu, M. and Şahin, R., (2011). Single and Combined Effects of Nano-SiO2, Nano-Al2O3 and Nano-Fe2O3 Powders on Compressive Strength and Capillary Permeability of Cement Mortar Containing Silica Fume, Mater. Sci. Eng. A, Vol:528, No:22–23, pp:7012–7019.
  • 10. Nazari, A. and Riahi, S., (2011). The Effects of Cr2O3 Nanoparticles on Strength Assessments and Water Permeability of Concrete in Different Curing Media, Mater. Sci. Eng. A, Vol:528, No:3, pp:1173–1182.
  • 11. El-Gamal, S.M.A., Hashem, F.S., and Amin, M.S., (2017). Influence of Carbon Nanotubes, Nanosilica and Nanometakaolin on Some Morphological-Mechanical Properties of Oil Well Cement Pastes Subjected to Elevated Water Curing Temperature and Regular Room Air Curing Temperature, Constr. Build. Mater., Vol:146, pp:531–546.
  • 12. Sadeghi, N.A. and Lotfi Omran, O., (2013). Estimation of Compressive Strength of Self-Compacted Concrete with Fibers Consisting Nano-SiO2 Using Ultrasonic Pulse Velocity, Constr. Build. Mater., Vol:44, pp:654–662.
  • 13. Zhang, P., Wan, J., Wang, K., and Li, Q., (2017). Influence of nano-SiO 2 on properties of fresh and hardened high performance concrete: A state-of-the-art review, Constr. Build. Mater., Vol:148, pp:648–658.
  • 14. Wu, Z., Khayat, K.H., and Shi, C., (2017). Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete, Cem. Concr. Res., Vol:95, pp:247–256.
  • 15. Wu, Z., Shi, C., Khayat, K.H., and Wan, S., (2016). Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC), Cem. Concr. Compos., Vol:70, pp:24–34.
  • 16. Shih, J.Y., Chang, T.P., and Hsiao, T.C., (2006). Effect of nanosilica on characterization of Portland cement composite, Mater. Sci. Eng. A, Vol:424, no:1–2, pp:266–274.
  • 17. Behfarnia, K. and Rostami, M., (2017). Effects of Micro and Nanoparticles of SiO2 on the Permeability of Alkali Activated Slag Concrete, Constr. Build. Mater., Vol:131, pp:205–213.
  • 18. Nazari, A. and Riahi, S., (2011). The Effects of SiO2 Nanoparticles on Physical and Mechanical Properties of High Strength Compacting Concrete, Compos. Part B Eng., Vol:42, no:3, pp:570–578.
  • 19. Beigi, M.H., Berenjian, J., Lotfi Omran, O., Sadeghi Nik, A., and Nikbin, I.M., (2013). An Experimental Survey on Combined Effects of Fibers and Nanosilica on The Mechanical, Rheological, and Durability Properties of Self-Compacting Concrete, Mater. Des., Vol:50, pp:1019–1029.
  • 20. Ltifi, M., Guefrech, A., Mounanga, P., and Khelidj, A., (2011). Experimental Study of the Effect of Addition of Nano-silica on the Behaviour of Cement Mortars, Procedia Eng., Vol:10, pp:900–905.
  • 21. Qing, Y., Zenan, Z., Deyu, K., and Rongshen, C., (2007). of Nano-SiO2 Addition on Properties of Hardened Cement Paste as Compared with Silica Fume, Constr. Build. Mater., Vol:21, No:3, pp:539–545.
  • 22. Ji, T., (2005). Preliminary Study on the Water Permeability and Microstructure of Concrete Incorporating Nano-SiO2, Cem. Concr. Res., Vol:35, no:10, pp:1943–1947.
  • 23. Jalal, M., Pouladkhan, A., Harandi, O.F., and Jafari, D., (2015). Comparative Study on Effects of Class F fly Ash, Nano Silica and Silica Fume on Properties of High Performance Self Compacting Concrete, Constr. Build. Mater., Vol:94, pp:90–104.
  • 24. Zhang, Y.L. and Li, C.D., (2002). Nano-structured Technology and Nano-structured Plastics. Beijing, China: China Light Industry Press; [in Chinese] pp:8–15, 386–9.