Predicting the financial success of hollywood movies using an information fusion approach

Genellikle Hollywood (Amerika’nın sinema endüstrisinin kalbi) sezgi ve tahminler diyarı olarak adledilir. Ürün talebine yönelik kestirimlerdeki belirsizlik film endüstrisini risklerle dolu bir iş alanı haline getirdi. Bu yüzden bir filmin finansal başarısını kestirebilmek pek çok bilim adamı ve endüstri liderlerinin ilgisini çeken zor ve büyüleyici bir problem olarak tanımlandı. Bu çalışmada, büyük bir veri tabanını kullanarak, veri madenciliği yöntemlerinin (yapay beyin ağları, karar ağaçları, destek vektör algoritmaları ve bilgi birleştirme yöntemleri) henüz yapımına başlanmamış bir film projesinin olası finansal getirisini kestirmedeki başarı potansiyelini araştırdık. Kestirim modellerimizde, bu sıradan tahmin problemini sınıflandırma temelli bir kestirim problemine dönüştürdük; yani kesin dolar ($) miktarını tahmin etmek yerine, bir filmin finansal başarısını dokuz sınıftan birine koyan bir kestirim modeli geliştirdik. Bu makalede kullandığımız veri madenciliği modellerinin oldukça başarılı adledilebilecek kestirim sonuçlarını ve model geliştirmede kullandığımız yöntemleri rapor ediyoruz.

Bilgi birleştirme yöntemini kullanarak hollywood sinema filmlerinin finansal başarısını kestirmek

Hollywood has often been called the land of hunches and wild guesses. The uncertainty associated with the predictability of product demand makes the movie business a risky endeavor. Therefore, predicting the box-office receipts of a particular motion picture has intrigued many scholars and industry leaders as a difficult and challenging problem. In this study, with a rather large and feature rich dataset, we explored the use of data mining methods (e.g., artificial neural networks, decision trees and support vector machines along with information fusion based ensembles) to predict the financial performance of a movie at the box-office before its theatrical release. In our prediction models, we have converted the forecasting problem into a classification problem—rather than forecasting the point estimate of box-office receipts; we classified a movie (based on its box-office receipts) into nine categories, ranging from a “flop” to a “blockbuster.” Herein we present our exciting prediction results where we compared individual models to those of the ensamples.

___

  • 1. Breiman, L. 2001. Random Forests. Machine Learning 45 (1), 5-32.
  • 2. Breiman, L., Friedman, J.H., Olshen, R.A., and Stone, C.J. 1984. Classification and Regression Trees. Wadsworth & Brooks Books & Software. Monterey, CA.
  • 3. Cristianini, N. and Shawe-Taylor, J. 2000. An Introduction to Support Vector Machines and other Kernel-based Learning Methods. Cambridge University Press: London.
  • 4. Delen, D., Sharda, R. and Kumar, P. 2007. Movie Forecast Guru: A Web-based DSS for Hollywood Managers, Decision Support Systems 43(4), 1151-1170.
  • 5. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A. and Vapnik, V. 1997. Support Vector Regression Machines. In Advances in Neural Information Processing Systems, MIT Press, 9, 155-161.
  • 6. Elder, J.F. 2003. The Generalization Paradox of Ensembles. Journal of Computational and Graphical Statistics, 12(4), 853–864.
  • 7. Eliashberg, J., Hui, S.K. and Zhang, Z.J. 2007. From Story Line to Box Office: A New Approach for Green-Lighting Movie Scripts, Management Science, 53(6), 881–893.
  • 8. Eliashberg, J., Swami, S., Weinberg, C.B. and Wierenga, B. 2001. Implementing and Evaluating SilverScreener: A Marketing Management Support System for Movie Exibitors, Interfaces, 31(3), 108-127.
  • 9. Eliashberg, J. and Sawhney, M.S. 1994. Modeling Goes to Hollywood: Predicting Individual Differences in Movie Enjoyment, Management Science 40(9), 1151-1173.
  • 10. Hastie, T., Tibshirani, R. and Friedman, J. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Publishing, New York, NY.
  • 11. Hykin, S. 1998. Neural Networks: A Comprehensive Foundation. New Jersey: Prentice Hall.
  • 12. Hornik, K., M. Stinchcombe and H. White, 1990, Universal Approximation of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward Network, Neural Networks, 3, 359-366.
  • 13. Karakan, G. and Koç, T. 2008. Technology Forecasting Methods and an Application to White Goods Sector. Industrial Engineering Journal (Endüstri Mühendisliği Dergisi), 20(1), 20-38.
  • 14. Litman B.R. and Ahn, H. 1998. Predicting Financial Success of Motion Pictures. In The Motion Picture Mega- Industry by B. Litman. Allyn & Bacon Publishing, Boston, MA.
  • 15. Litman, B.R. 1983. Predicting Success of Theatrical Movies: An Empirical Study, Journal of Popular Culture, 16(9), 159-175.
  • 16. Olson, D. and Delen, D. (2008). Advanced Data Mining Techniques. New York, NY: Springer.
  • 17. Ravid, S.A. 1999. Information, Blockbusters, and Stars: A Study of the Film Industry, Journal of Business, 72(4), 463-492.
  • 18. Sawhney, M.S. and Eliashberg, J. 1996. A Parsimonious Model for Forecasting Gross Box-Office Revenues of Motion Pictures, Marketing Science, 15(2), 113-131.
  • 19. Sharda, R. and Delen, D. 2006. Predicting Box-office Success of Motion Pictures With Neural Networks. Expert Systems with Applications 30, 243–254.
  • 20. Sochay, S. 1994. Predicting the performance of motion pictures, The Journal of Media Economics 7(4), 1-20.