İstanbul’da itfaiye istasyonu yerlerinin seçimi için yeni bir model

Özellikle acil hizmetler veren polis, hastane, itfaiye gibi kurumlar için yer seçimi büyük önem taşımaktadır. Uygun bir yer seçimi gerçekleştirilmediği takdirde bunun sonuçları insan hayatını tehlikeye atabilir niteliktedir. İstanbul gibi büyük metropollerde, artan nüfus ve trafik yoğunluğunun yanı sıra bir de metropolün deprem kuşağında olması durumunda, itfaiye araçlarının olay yerine en hızlı şekilde ulaşması hayati önem taşımakta; bu da itfaiye istasyonu yerinin etkin seçimine kritik bir rol yüklemektedir. Bu çalışma; İstanbul Büyükşehir Belediyesi tarafından kararlaştırıldığı gibi, itfaiye teşkilatının her bölgeye en çok beş dakikada erişebilmesi ve kapsama alanının %100 olması hedeflenerek yeni kurulacak olan itfaiye istasyonlarının küme kapsama modeli yardımıyla konumlandırılmasını içermektedir. Bu amaçla bir tamsayı programlama modeli kurulmuş, coğrafi bilgi sistemlerinden elde edilen verilerle model çözülmüş, seçilen yerler için itfaiye kurulması durumunda yangın hizmet düzeyinin değişimi incelenmiştir.

Fire station location selection for İstanbul

For emergency services such as ambulance systems and fire departments, location selection plays a critical role due to the direct impact of these services on human lives. Timeliness plays a primary role in location selection decision of fire stations for large metropolitan cities such as Istanbul with increasing population with a high level of congestion coupled with an imminent earthquake risk. This study is based on a set-covering model for locating new fire stations, which target to serve each area at most in five minutes and improve their coverage area to 100% for Istanbul Municipality Fire Department. Accordingly, a set-covering model is built and solved using the data retrieved from geographical information systems. Finally the change in service level with proposed fire station locations is investigated and further suggestions are provided.

___

  • 1. Alsalloum, O.I., Rand, G.K. 2006. Extension to Emergency Vehicle Location Models, Computers and Operations Research, 33, 2725-2743
  • 2. Araz, C., Selim, H., Ozkarahan, I. 2007. A Fuzzy Multiobjective Covering-based Vehicle Location Model for Emergency Services, Computers & Operations Research, 34, 705–726
  • 3. Badri, M.A., Mortagy, A.K., Alsayed, C.A. 1998. “A Multi- objective Model for Locating Fire Stations,” European Journal of Operational Research, 110, 243-260
  • 4. Brandeau, M.L., Chiu, S.S. 1989. An Overview of Representative Problems in Location Research, Management Science, 35 (6), 645-674
  • 5. Cheung , B.K.S., Langevin, A., Villeneuve, B. 2001. High Performing Evolutionary Techniques for Solving Complex Location Problems in Industrial System Design, Journal of Intelligent Manufacturing, 12, 455-466
  • 6. Churc, R.L. 2002. Geographical Information Systems and Location Science, Computers and Operations Reasarch, 29 (6), 541-562
  • 7. Church, R., Revelle, C. 1974. The Maximal Covering Locational Problem. Papers of the Regional ScienceAssociation 32, 101-118
  • 8. Çatay, B., Başar, A., Ünlüyurt, T. 2008. “İstanbul’da Acil Yardım İstasyonlarının Yerlerinin Planlanması,” Endüstri Mühendisliği Dergisi, 19 (4), 20-35.
  • 9. Daskin, M.S., Hogan, K., ReVelle, C., 1988. Integration of Multiple, Excess, Backup, and Expected Covering Models, Environment and Planning, 15, 15-35
  • 10. Diwekar, U. 2003. Introduction to Applied Optimization. Kluwer Academic Publisher, 209-253
  • 11. Dobson, J. 1979. A Regional Screening Procedure for Land Use Suitability Analysis, Geographical Review, 69 (2), 224-234
  • 12. Drezner, Z. (Ed.) 1995. “Facility Location: A Survey of Applications and Methods,” Springer, New York.
  • 13. Drezner, Z., Hamacher, H.W. 2002. Facility Location: Application and Theory, Berlin, Springer
  • 14. Garey, M.R., Jonhson, D.S. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman and Co., New York
  • 15. Goldberg, J.B. 2004. Operations Research Models for the Deployment of Emergency Services Vehicles, EMS Management Journal, 1 (1), 20-39
  • 16. Hewitt, R.L. 2002. Siting a Fire Station by Leveraging Soft Constraints and Supporting Science, Interfaces, 32 (4), 69-74
  • 17. Karasakal, O., Karasakal, E.K. 2004. A Maximal Covering Location Model in the Presence of Partial Coverage, Computers and Operations Research, 3, 1515-1526
  • 18. Liu, N., Huang, B., Chandramouli, M. 2006. Optimal Siting of Fire Stations Using GIS and ANT Algoritm, Journal of Computing in Civil Engineering, September/October 2006
  • 19. Marionov, V., ReVelle, C. 1995. Siting Emergency Services, in: Drezner, Z., (editor) Facility Location. Berlin, Springer, 199-223
  • 20. Plane, D., Hendrik, T. 1977. Mathematical Programming and the Location of Fire Companies for Denver Fire Department, Operations Research, 25 (4), 563-578
  • 21. ReVelle, C., Schweitzer, J., ve Snyder, S. 1996. “The Maximal Conditional Covering Problem,” INFOR, 34(2), 77–91
  • 22. Selim, H., Özkarahan, İ. 2003. “Acil Servis Araçları Yerleşiminin Belirlenmesinde Yeni Bir Model,” Endüstri Mühendisliği Dergisi, 14 (1), 18-27.
  • 23. Şahin, G., Süral, H. 2007. A Review of Hierarchical Facility Location Models, Computers and Operations Research, 34, 2310-2331
  • 24. Salhi , S., Gamal, M.D.H. 2003. A Genetic Algorithm Based Approach fort he Uncapacitated Continous Location Problem, Annals of Operational Research, 97, 203-222
  • 25. Schilling, D. 1980. Dynamic Location Modeling for Public Sector Facilities: A Multicriteria Approach, Decision Sciences, 11, 714-725
  • 26. Sorensen, P., Church, R. 2010. Integrating Expected Coverage and Local Reliability for Emergency Medical Service Location Problems, Socio-Economic and Planning Sciences, 44, 8–18
  • 27. Swersey A.J. 1994. “The Deployment of Police, Fire, and Emergency Medical Units,” Handbooks in Operations Research and Management Science Vol. 6, Hazırlayanlar: Pollock, S.M., Rothkopf M.H., Barnett A., Bölüm 6, 151- 200.
  • 28. Toregas, C., Swain, R., ReVelle, C., Bergman, L. 1971. The Location of Emergency Service Facilities, Operations Research, 19, 1363-1373
  • 29. Toregas, C., ReVelle, C. 1973. “Binary Logic Solutions to a Class of Location Problems,” Geographical Analysis, 5, 145-155
  • 30. Tzeng, G.H., Chen, Y.W. 1999. The Optimal Location of Airport Fire Stations: A Fuzzy Multi-objective Programming and Revised Genetic Algorithm Approach. Transportation Planning and Technology, 23, 37-551
  • 31. Valinski D. 1955. “A Determination of the Optimum Location of Fire-Fighting Units in New York City,” Journal of Operations Research Society of America, 3(4) 494-512.
  • 32. Yang, J., He, H.S., Gustafson, E.J. 2004. A Hierarchical Fire Frequency Model to Simulate Temporal Patterns of Fire Regimes in LANDIS, Ecological Modelling, 180 (1), 119-133
  • 33. Yang, L., Jones, B.F., Yang, S-H. 2007. A Fuzzy Multiobjective Programming for Optimization of Fire Station Locations Through Genetic Algorithms, European Journal of Operational Research, 181 (2), 903-915