Çiftdüzeyli bir rekabetçi tesis yer seçimi problemi için tabu arama sezgiseli

Bu çalışmada bir rakibe ait tesislerin bulunduğu pazara, yeni tesisler açarak girmeye çalışan bir firmanın problemi ele alınmaktadır. Pazara yeni giriş yapan firma kârını enbüyükleyecek eniyi tesis yerlerini ve çekiciliklerini bulmayı amaçlamaktadır. Diğer taraftan rakip firma kendi kârını enbüyüklemek için, bu durum karşısında tepki göstererek var olan tesislerinin çekiciliklerini değiştirerek yeniden tasarlayabilir, var olan tesislerini kapatabilir ve/veya yeni tesisler açabilir. Müşterilerin davranışını modellemek için çekim temelli gösterimden yararlanılmaktadır. Bu gösterimde bir müşterinin bir tesisi ziyaret etme olasılığı tesis çekiciliğiyle doğru, müşteriyle tesis arasındaki uzaklıkla ters orantılıdır. Çalışmada kesikli uzayda çiftdüzeyli doğrusal olmayan bir karışık tamsayı programlama gösterimi geliştirilmektedir. Bu gösterimde pazara yeni giriş yapan firma karar vericilerden öncü, rakip firma ise izleyici konumdadır. Geliştirilen gösterime olurlu çözüm bulmak için iki tabu arama sezgiseli önerilmektedir. Bu sezgisellerde, bir eğim artış algoritması ile doğrusal olmayan programlama gevşetmesi kullanan bir dal-sınır algoritması olmak üzere iki kesin yöntemden altyordam olarak yararlanılmaktadır.

Tabu search heuristics for a bilevel competitive facility location problem

In this study, the problem of a firm is considered where the firm tries to open new facilities in a market where there are already existing facilities belonging to a competitor. The new entrant firm wishes to find the optimal location and attractiveness levels of its facilities to maximize its profit. On the other hand, the competitor can react to the new entrant by changing the attractiveness levels of its existing facilities, closing them and/or opening new facilities. The gravity-based rule is employed in order to model the customer behavior. According to this rule, the probability that a customer patronizes a facility is proportional to the attractiveness level of the facility and inversely proportional to the distance between the customer and the facility. To this end, a bilevel mixed-integer nonlinear programming problem in discrete space is formulated. The new entrant firm is the leader of the game and the competitor is the follower. In order to find feasible solutions to the model, two tabu search heuristic methods are proposed. Two exact methods are utilized as subroutines of the proposed methods: a gradient ascent algorithm and a branch-and-bound algorithm that uses nonlinear programming relaxation.

___

  • 1. Bard, J.F. 1998. “Practical Bilevel Optimization Algorithms and Applications,” Kluwer Academic Publishers.
  • 2. Bhadury, J., Eiselt, H.A., Jaramillo, J.H. 2003. “An Alternating Heuristic For Medianoid and Centroid Problems in the Plane,” Computers and Operations Research, 30, 553-565.
  • 3. Bertsekas, D.P. 1995. “Nonlinear Programming,” Athena Scientific, Boston, USA.
  • 4. Drezner, Z. 1982. “Competitive Location Strategies for Two Facilities,” Regional Science and Urban Economics, 12, 485-493.
  • 5. Drezner, T., Drezner, Z. 1998. “Facility Location in Anticipation Of Future Competition,” Location Science, 6, 155-173.
  • 6. Fischer, K. 2002. “Sequential Discrete p-facility Models for Competitive Location Planning,” Annals of Operations Research, 111 (1-4), 253-270.
  • 7. Glover, F., Laguna, M. 1997. “Tabu Search,” Kluwer Academic Publishers.
  • 8. Gümüş, Z., Floudas, C.E. 2001. “Global Optimization of Nonlinear Bilevel Programming Problems,” Journal of Global Optimization, 20, 1-31.
  • 9. Hotelling, H. 1929. “Stability in Competition,” Economic Journal, 39, 41-57.
  • 10. Huff, D. L. 1964. “Defining and Estimating a Trade Area,” The Journal of Marketing, 28, 34-38.
  • 11. Huff, D. L. 1966. “A Programmed Solution For Approximating an Optimum Retail Location,” Land Economics, 42, 293-303.
  • 12. Küçükaydın, H., Aras, N., Altınel, İ.K. 2011a. “A Discrete Competitive Facility Location Model With Variable Attractiveness,” Journal of the Operational Research Society, 62, 1726-1741.
  • 13. Küçükaydın, H., Aras, N., Altınel, İ.K. 2011b. “Competitive Facility Location Problem with Attractiveness Adjustment of the Follower: A Bilevel Programming Model and its Solution,” European Journal of Operational Research, 208 (3), 206-220.
  • 14. Moore, J.T., Bard, J.F. 1990. “The Mixed-Integer Linear Bilevel Programming Problem”, Operations Research, 38, 911-921.
  • 15. Nakanishi, M., Cooper, L.G. 1974. “Parameter Estimate for Multiplicative Interactive Choice Model: Least Square Approach,” Journal of Marketing Research, 11, 303-311.
  • 16. Pérez, M.D.G., Pelegrín, B. 2003. “All Stackelberg Location Equilibria in the Hotelling’s Duopoly Model on a Tree with Parametric Prices,” Annals of Operations Research, 122 (1-4), 177-192.
  • 17. Plastria, F., Vanhaverbeke, L. 2008. “Discrete Models for Competitive Location With Foresight,” Computers and Operations Research, 35 (3), 683-700.
  • 18. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. 1986. “Numerical Recipes: The Art of Scientific Computing,” Cambridge University Press, New York.
  • 19. Reilly, W.J. 1931. “The Law of Retail Gravitation,” Knickerbocker Press, NewYork, NY.
  • 20. Sáiz, M.E., Hendrix, E.M.T., Fernández, J., Pelegrín, B. 2009. “On a Branch-and-bound Approach For a Huff-like Stackelberg Location Problem,” OR Spectrum, 31 (3), 679-705.
  • 21. Serra, D., ReVelle, C. 1993. “Market Capture by Two Competitors: The Pre-emptive Location Problem,” Economics Working Paper Series, 39.
  • 22. Waltz, R.A., Plantenga, T.D. 2009. “Knitro User’s Manual Version 6.0,” Ziena Optimization Inc.