Atomik Sensörlerde Güç Genişleme Etkisi İle Yüksek Seviyeli Mikrodalga Alan Şiddeti Ölçümü

Bu çalışmada yüksek seviyeli mikrodalga alanların algılanması amacıyla lazer-atom-mikrodalga etkileşimine dayanan bir Cs atomik sensör sistemi önerilmiştir. Çalışma kapsamında lazer ışınının frekansı, Cs atomik sensörünün D2 enerji geçişinde bulunan 6S1/2 (F=4) ↔ 6P3/2 (F=4) enerji geçişine kilitlenmiştir. 6S1/2 (F=3) ↔ 6S1/2 (F=4) enerji geçişine denk gelen 9,192 GHz frekansında yüksek seviyeli mikrodalga alan uygulanarak DROR (çift radyo optik rezonans) elde edilmiştir. Bu rezonansın DC manyetik alan altında Zeeman alt seviyeleri gözlenmiş ve bunlardan 6S1/2 (F=3, mf=0) ↔ 6S1/2 (F=4, mf=0)  π-geçişine odaklanılmıştır. Atomik sensörün farklı lazer güçlerinde ve 500 V/m ile 7.5 kV/m arasında değişen yüksek seviyeli mikrodalga alan şiddetlerinde ölçümleri gerçekleştirilmiştir. Uygulanan yüksek seviyeli mikrodalga alan şiddetlerinde, 6S1/2 (F=3,  mf=0) ↔ 6S1/2 (F=4, mf=0)  π-geçişinin bant genişliği ve genlik ölçümlerinin değişimi araştırılmıştır.  Bunun sonuncunda yüksek seviyeli mikrodalga alanların algılanmasında kullanılacak olan DROR rezonansının Zeeman geçişi için bant genişliği ölçümlerinin genlik ölçümlerine göre üstünlükleri tartışılmıştır.

High Level Microwave Field Strength Measurement At The Atomic Sensors With Power Broadening Effect

In this study, a Cs atomic sensor system is proposed to detect high-level microwave field based on laser-atom-microwave interaction. Within the scope of the study, the frequency of the laser is locked to the 6S1/2 (F=4) ↔ 6P3/2 (F=4) energy transition on the D2 line of Cs atomic transition. The DROR (double radio optical resonance) resonance was obtained by applying a high level microwave field at the frequency of 9,192 GHz corresponding to 6S1/2 (F=3) ↔ 6S1/2 (F=4) energy transition. Zeeman sub-levels of DROR resonance were observed under the DC magnetic field and resonance on the 6S1/2 (F=3, mf=0) ↔ 6S1/2 (F=4, mf= 0) π-transition were investigated. Measurements of the atomic sensor were performed at various laser powers and at high levels of microwave field strengths ranging from 500 V / m to 7.5 kV/m. The dependence of the bandwidth and amplitude of the Zeeman resonance at 6S1/2 (F=3, mf=0) ↔ 6S1/2 (F=4, mf=0) π-transition were investigated as a function of applied high-level microwave field strength. As a result of this, the superiority of bandwidth measurements to the amplitude measurements were discussed for the Zeeman transition of the DROR which will be used in the sensing of high level microwave fields.

___

  • [1] https://www.bipm.org/en/measurement-units/rev-si/.
  • [2] https://www.bipm.org/cc/CCEM/Allowed/ 30/CCEM-17-Report-NIST.pdf.
  • [3] I. I. Rabi, “Space quantization in a gyrating magnetic field”, Phys. Rev., vol. 51, pp. 652-654, 1937.
  • [4] A. Kastler, ”Production et detection optique d'une inegalite de population”, ,J. Phys. Radium, vol. 11, pp. 255-265, 1950.
  • [5] H. G. Dehmelt, “Modulation of a light beam by precessing absorbing atoms”, Phys. Rev., vol. 105, pp. 1924-1925, 1957.
  • [6] W. E. Bell, A. Bloom, “Optical detection of magnetic resonance in alkali metal vapor”, Phys. Rev., vol. 107, pp. 1559-1565, 1957.
  • [7] A. W. Ali and H. R. Griem, “Theory of Resonance Broadening of Spectral Lines by Atom-Atom Impacts”, Erratum Phys. Rev. 144, 366, 1966.
  • [8] E. B. Aleksandrov, A. B. Mamyrin, A. P. Naumov, “Hfs-magnetometer for absolute measurement of magnetic induction of weak magnetic-fields”, Meas. Tech., vol. 20, pp. 1048-1051, 1977.
  • [9] W. Happer, “Optical pumping”, Rev. Mod. Phys., vol. 44, pp. 169–249, 1972.
  • [10] A. Osterwalder, F. Merkt, “Using high Rydberg states as electric field sensors”, Phys. Rev. Lett., vol. 82, pp. 1831-1834, 1999.
  • [11] E. A. Donley, T. P. Crowley, T. P. Heavner, B. F. Riddle, “Quantum-based microwave power measurement performed with a miniature atomic fountain”, Proc. IEEE Int. Frequency Control Symp., pp. 135-137, 2003.
  • [12] I. M. S. S. Savukov, M. V. Romalis, K. L. Sauer, “Tunable atomic magnetometer for detection of radio-frequency magnetic fields”, Phys. Rev. Lett., vol. 95, pp. 063004, 2005.
  • [13] T. P. Crowley, E. A. Donley, T. P. Heavner, “Quantum-based microwave power measurements: Proof-of-concept experiment”, Rev. Sci. Instrum., vol. 75, pp. 2575-2580, 2004.
  • [14] D. C. Paulusse, N. L. Rowell, A. Michaud, “Accuracy of an atomic microwave power standard”, IEEE Trans. Instrum. Meas., vol. 54, no. 2, pp. 692-695, 2005. [15] M. Çetintaş, R. Hamid, O. Şen, and S. Çakır, “Traceable field strength measurements based on laser spectroscopy techniques”, 20th Int. Zurich Symp. Electromagn. Compat., 2009.
  • [16] M. Çetintaş, R. Hamid, O. Şen, and S. Çakır, “Characterization of a far-field microwave magnetic field strength sensor based on double radiooptical resonance”, IEEE Trans. Electromagn. Compat., vol.52, no.1, pp.21–31, 2010.
  • [17] M. Çetintaş, S. Çakır, R. Hamid, O. Şen, “Toward absolute measurements of far-field microwave magnetic field by atomic sensor based on double radiooptical resonance”, IEEE Trans. on Electromagnetic Compat., vol. 54, no. 1, pp. 225-227, 2012.
  • [18] S. Çakır, R. Hamid, M. Çetintaş, G. Çakır, O. Şen, “Sensing of RF Magnetic Fields Using Zeeman Splitting of Double Radiooptical Resonance and a New Approach to Helmholtz Coil Calibrations. Sensors Journal IEEE, vol. 12, no. 7, pp. 2465-2473, 2012.
  • [19] J. Vanier, A. Godone, and F. Levi, “Coherent population trapping in cesium: Dark lines and coherent microwave emission”, Phys. Rev. A, vol. 58, no. 3, pp. 2345–2358, 1998.
  • [20] P. Ripka and M. Janosek, “Advances in magnetic field sensors”, IEEE Sensors J., vol. 10, no. 6, pp. 1108–1116, 2010.
  • [21] J. Kitching, S. Knappe, and E. A. Donley, “Atomic sensors-a review”, IEEE Sensors J., vol. 11, no. 9, pp. 1749–1758, 2011.
  • [22] A. S. Zibrov, A. A. Zhukov, V. P. Yakovlev, and V. L. Velichansky, “Shape of the signal of double radio-optical resonance in 85Rb atomic vapors in strong fields”, JETP Lett., vol. 83, no. 4, pp. 136–140, 2006.
  • [23] A. Litvinov, G. Kazakov, B. Matisov, and I. Mazets, “Double radio-optical resonance in 87Rb atomic vapour in a finite-size buferless cell”, J. Phys. B: At. Mol. Opt. Phys., vol. 41, pp. 125401-1–125401-8, 2008.
  • [24] D. Paulusse, N. Rowell, and A. Michaud, “Realization of a atomic microwave power standard”, Proc. Conf. Precision Electromagn. Meas., Ottawa, ON, Canada, 2002.
  • [25] Christopher L. Holloway, Joshua A. Gordon, Matt T. Simons, Haoquan Fan, Santosh Kumar, James P. Shaffer, David A. Anderson, Andrew Schwarzkopf, Stephanie A. Miller, Nithiwadee Thaicharoen, Georg Raithel, “Atom-based RF electric field measurements: An initial investigation of the measurement uncertainties”, Electromagnetic Compatibility (EMC) 2015 IEEE International Symposium on, pp. 467-472, 2015.
  • [26] Haoquan Fan, Santosh Kumar, Jonathon Sedlacek, Harald Kübler, Shaya Karimkashi, James P Shaffer, “Atom based RF electric field sensing” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 48, pp. 202001, 2015.
  • [27] Christopher L. Holloway, Joshua A. Gordon, Steven Jefferts, Andrew Schwarzkopf, David A. Anderson, Stephanie A. Miller, Nithiwadee Thaicharoen, Georg Raithel, “Broadband Rydberg Atom-Based Electric-Field Probe for SI-Traceable Self-Calibrated Measurements”, Antennas and Propagation IEEE Transactions on, vol. 62, no. 12, pp. 6169-6182, 2014.
  • [28] Zhenfei Song, Zhigang Feng, Xinmeng Liu, Dabo Li, Hao Zhang, Jiasheng Liu, Linjie Zhang, “Quantum-Based Determination of Antenna Finite Range Gain by Using Rydberg Atoms”, Antennas and Wireless Propagation Letters IEEE, vol. 16, pp. 1589-1592, 2017.
  • [29] Zhenfei Song, Wanfeng Zhang, Xiaochi Liu, Haiyang Zou, Jie Zhang, Zhiyuan Jiang, Jifeng Qu, “Quantum-Based Amplitude Modulation Radio Receiver Using Rydberg Atoms” Globecom Workshops (GC Wkshps) 2018 IEEE, pp. 1-6, 2018.
  • [30] Steck D. A., “Cesium D Line Data”, revision 2.1.4. [Online],(http:// steck.us/alkalidata), 2010.
  • [31] W. Demtroder, “ Laser Spectroscopy”, 2nd ed. New York: Springer-Verlag, 1996.
  • [32] R. G. Gamidov, İ. Taşkın, M. Çetintaş, V. Sautenkov, “Unmodulated External-Cavity Diode Laser Stabilized on Cesium D2 Line”, IEE Proc. Science, Measurement and Technology, Vol. 143, N.4, pp.263-264, 1996.