Atomik Sensörler İle Çınlama Odalarının Yüksek Seviyeli Elektromanyetik Alan Şiddetlerinde Deneysel Olarak Doğrulanması

Bu çalışmada ilk defa elektromanyetik çınlama odalarında oluşturulan yüksek seviyeli elektrik alanın teorik değerinin, lazer-atom-mikrodalga etkileşimine dayanan bir Cs atomik sensor sistemi kullanılarak deneysel olarak doğrulanması araştırılmıştır. Çalışma kapsamında lazer ışınının frekansı Cs atomlarının D2 enerji seviyesindeki 6S1/2 (F=4)↔6P3/2 (F=4) enerji geçişine kilitlenmiştir. İlk olarak çınlama odası içinde oluşturulan homojen 9,192 GHz frekansındaki mikrodalga alan ile 6S1/2 (F=3)↔6S1/2 (F=4) geçişinde DROR (çift radyo optik rezonans) elde edilmiştir. Öncelikle DROR rezonansının genliğinin çınlama odası içerisinde oluşturulan homojen ve yönden bağımsız mikrodalga alana bağlılığı araştırılmış, daha sonra ise DROR rezonansının DC manyetik alan altında Zeeman alt seviyeleri gözlenmiştir. Bunlardan 6S1/2 (F=3, mF=0) ↔ 6S1/2 (F=4, mF= 0)  π-geçişindeki merkez Zeeman rezonansının bant genişliği ve genliğinin çınlama odası içerisinde oluşturulan homojen ve yönden bağımsız mikrodalga alana bağlılığı araştırılmıştır. Çalışma sonucunda çınlama odalarının yüksek seviyeli elektromanyetik alan şiddetlerinde deneysel olarak doğrulanmasında yeni bir sensör olarak kullanılabilmesinin temelleri atılmıştır.

Experimentally Verification of Reverberation Chambers at the High Level Electromagnetic Field Strengths via Atomic Sensors

In this study, for the first time, it was investigated that the high level theoretical electrical field value generated in electromagnetic reverberation chambers was experimentally verified using a Cs atomic sensor system based on laser-atom-microwave interaction. The scope of the work, the frequency of the laser is locked to the 6S1/2 (F=4) ↔ 6P3/2 (F=4) energy transition in the D2 line of Cs atomic transition. The DROR (double radio optical resonance) resonance was obtained by applying a high level uniform microwave field  at the frequency of 9,192 GHz in reverberation chamber corresponding to  6S1/2 (F=3)↔6P3/2 (F=4) energy transition. Zeeman sub-levels of DROR resonance were observed under the DC magnetic field and resonance on the 6S1/2 (F=3,mF=0) ↔ 6S1/2 (F=4,mF=0) π-transition were investigated. The dependence of the bandwidth and amplitude of the Zeeman resonance at 6S1/2 (F=3, mF=0) ↔ 6S1/2 (F=4, mF=0) π-transition and also amplitude of the DROR resonance were investigated as a function of applied uniform and isotropic high-level microwave field strength in reverberation chamber. As a result of the study, it showed that use the atomic sensors as a new sensor in experimental verification of high electromagnetic field strengths in reverberation chambers.

___

  • [1] IEC 61000-4-21, Testing and measurement techniques-Reverberation chamber test methods, 2nd ed., International Electrotechnical Commission, 2011.
  • [2] RTCA DO-160F, Environmental Conditions and Test Procedures for Airborne Equipment.
  • [3] RTCA DO-160G, Environmental Conditions and Test Procedures for Airborne Equipment.
  • [4] “Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems And Equipment”, Department of Defence USA, MIL-STD-461F-2007.
  • [5] Çakır S., Aslan Ç. and Leferink F.” Comparison of Test Standards for Immunity Testing in Reverberation Chambers”, Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), June 20-23, 2017, Seoul, Korea.
  • [6] Christopher L. Holloway, Joshua A. Gordon, Matt T. Simons, Haoquan Fan, Santosh Kumar, James P. Shaffer, David A. Anderson, Andrew Schwarzkopf, Stephanie A. Miller, Nithiwadee Thaicharoen, Georg Raithel, "Atom-based RF electric field measurements: An initial investigation of the measurement uncertainties", Electromagnetic Compatibility (EMC) 2015 IEEE International Symposium on, pp. 467-472, 2015.
  • [7] Haoquan Fan, Santosh Kumar, Jonathon Sedlacek, Harald Kübler, Shaya Karimkashi, James P Shaffer, "Atom based RF electric field sensing", Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 48, pp. 202001, 2015.
  • [8] Christopher L. Holloway, Joshua A. Gordon, Steven Jefferts, Andrew Schwarzkopf, David A. Anderson, Stephanie A. Miller, Nithiwadee Thaicharoen, Georg Raithel, "Broadband Rydberg Atom-Based Electric-Field Probe for SI-Traceable Self-Calibrated Measurements", Antennas and Propagation IEEE Transactions on, vol. 62, no. 12, pp. 6169-6182, 2014.
  • [9] Zhenfei Song, Zhigang Feng, Xinmeng Liu, Dabo Li, Hao Zhang, Jiasheng Liu, Linjie Zhang, "Quantum-Based Determination of Antenna Finite Range Gain by Using Rydberg Atoms", Antennas and Wireless Propagation Letters IEEE, vol. 16, pp. 1589-1592, 2017.
  • [10] Zhenfei Song, Wanfeng Zhang, Xiaochi Liu, Haiyang Zou, Jie Zhang, Zhiyuan Jiang, Jifeng Qu, "Quantum-Based Amplitude Modulation Radio Receiver Using Rydberg Atoms", Globecom Workshops (GC Wkshps) 2018 IEEE, pp. 1-6, 2018.
  • [11] https://www.bipm.org/en/measurement-units/rev-si/.
  • [12] https://www.bipm.org/cc/CCEM/Allowed/30/CCEM-17-Report-NIST.pdf.
  • [13] M. Çetintaş, R. Hamid, O. Şen, and S. Çakır, “Traceable field strength measurements based on laser spectroscopy techniques, ”presented at the Top. Session TP-2 20th Int. Zurich Symp. Electromagn. Compat., Zurich, Switzerland, 2009.
  • [14] M. Çetintaş, R. Hamid, O. Şen, and S. Çakır, “Characterization of a far-field microwave magnetic field strength sensor based on double radiooptical resonance”, IEEE Trans. Electromagn. Compat.,vol.52, no.1, pp.21–31, Feb.2010.
  • [15] M. Çetintaş, S. Çakır, R. Hamid, O. Şen, "Toward absolute measurements of far-field microwave magnetic field by atomic sensor based on double radiooptical resonance", IEEE Trans. on Electromagnetic Compat., vol. 54, no. 1, pp. 225-227, 2012.
  • [16] Soydan Çakır, Ramiz Hamid, Mustafa Çetintaş, Gonca Çakır, Osman Şen, "Sensing of RF Magnetic Fields Using Zeeman Splitting of Double Radio optical Resonance and a New Approach to Helmholtz Coil Calibrations", Sensors Journal IEEE, vol. 12, no. 7, pp. 2465-2473, 2012.
  • [17] W. Demtroder, ¨ Laser Spectroscopy, 2nd ed. New York: Spring.
  • [18] Steck D. A., “Cesium D Line Data” 2010, revision 2.1.4[Online],(http:// steck.us/alkalidata).
  • [19] R.G. Gamidov, İ. Taşkın, M. Çetintaş, V. Sautenkov, “Unmodulated External-Cavity Diode Laser Stabilized on Cesium D2 Line”, IEE Proc. Science, Measurement and Technology, Vol. 143, N.4, pp.263-264, 1996.