TEDARİKÇİ SEÇİMİNDE BULANIK ESNEK KÜMELER TEORİSİ

Tedarikçi seçimi, işletmeler için hayati önem taşıyan stratejik kararlardan bir tanesidir. Günümüzde işletmelerin rekabet koşulları ise hem ulusal hem uluslararası düzeyde gün geçtikçe zorlaşmaktadır. Yoğun rekabetin yaşandığı piyasa koşullarında işletmeler ise beraber çalışacakları doğru tedarikçileri belirleyerek, faaliyetlerini uzun dönemli planlayıp avantaj yakalamayı arzulamaktadır. Çünkü seçilen tedarikçi işletmenin uzun dönemli başarısını etkileyen önemli unsurların başında gelmektedir. Bu çalışmada İstanbul’ da Makine İmalat Sanayi’nde faaliyetlerini sürdüren bir firmanın tedarikçi seçim problemi Bulanık Esnek Kümeler Teorisi ile çözüme ulaştırılmıştır. Tedarikçi seçimi için literatür incelenmiş ve yaygın olarak kullanılan fiyat, kalite, teslimat ve esneklik kriterlerinden faydalanılmıştır. Bulanık esnek kümeler teorisi ile değerlendirilen 6 tedarikçi T6, T2,T4,T5,T1 ve T3 şeklinde sıralanmıştır.

FUZZY SOFT SETS THEORY FOR SUPPLIER SELECTION

Supplier selection is one of the strategic decisions for businesses. Today, competitive conditions of businesses are getting harder day by day at both national and international levels. On the other hand, in the market conditions where intense competition is experienced, businesses desire to determine the right suppliers to work with, to plan their activities in the long term and gain an advantage. Because the selected supplier is one of the most important factors affecting the long-term success of the business. In this study, the supplier selection problem of a company that operates in the Machinery Manufacturing Industry Sector in Istanbul has been solved with the Fuzzy Soft Sets Theory. Literature is reviewed for supplier selection and commonly used price, quality, speed (delivery) and flexibility criteria are used. Six suppliers evaluated by fuzzy flexible sets theory are listed as T6,T2,T4,T5,T1 and T3.

___

  • Akyüz, G. A. (2012). Bulanık Vikor Yöntemi İle Tedarikçi Seçimi. Atatürk Üniversitesi İktisadi Ve İdari Bilimler Dergisi, 26(1), 197-215.
  • Barbarosoglu, G., & Yazgac, T. (1997). An application of the analytic hierarchy process to the supplier selection problem. Production And İnventory Management Journal, 38(1), 14.
  • Baykal, N. ve Beyan, T. (2004). Bulanık Mantık İlke Ve Temelleri, Ankara: Bıçaklar Kitabevi.
  • Bojadziev, G. (2007). Fuzzy Logic For Business, Finance, And Management, Vol. 23. World Scientific.
  • Boyer, K. K., & McDermott, C. (1999). Strategic consensus in operations strategy. Journal of Operations Management, 17(3), 289-305.
  • Boyer, K. K., & Pagell, M. (2000). Measurement issues in empirical research: improving measures of operations strategy and advanced manufacturing technology. Journal of Operations Management, 18(3), 361-374.
  • Crosby, L.A., Evans, K.R. ve Cowles, D. (1990). Relationship Quality in Services Selling: An İnterpersonal İnfluence Perspective, The Journal of Marketing, s.68-81.
  • Çağman, N. ve Enginoğlu, S. (2012). Fuzzy Soft Matrix Theory And Its Application İn Decision Making. Iranian Journal of Fuzzy Systems, 9(1), 109-119.
  • Dağdeviren, M., & Eren, T. (2001). Tedarikçi firma seçiminde analitik hiyerarşi prosesi ve 0-1 hedef programlama yöntemlerinin kullanılması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 16(1).
  • Dağdeviren, M., ve Erarslan, E. (2008). Promethee Siralama Yöntemi ile Tedarikçi Seçimi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 23(1).
  • Diaz, M. S., Gil, M. J. Á., & Machuca, J. A. D. (2005). Performance measurement systems, competitive priorities, and advanced manufacturing technology: some evidence from the aeronautical sector. International Journal of Operations & Production Management, 25(8), 781-799.
  • Dickson, G. W. (1966). An Analysis of Vendor Selection Systems and Decisions.
  • Enginoğlu, S. (2008). Soft Kümeler Ve Soft Karar Verme Metodları, (Yüksek Lisans Tezi), Tokat: Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü.
  • Fawcet, S.E., Stanley, L.L. Ve Smith, S.R., (1997), “Developing A Logistics Capability To Improve The Performance Of International Operations”, Journal Of Business Logistic,S 18 (2), 101–127.
  • Joshi, M. P., Kathuria, R., & Porth, S. J. (2003). Alignment of strategic priorities and performance: an integration of operations and strategic management perspectives. Journal of Operations Management, 21(3), 353-369.
  • Karaöz, A. E., Akyüz, G. A., & Tekin, K. (2019). Tedarikçi Seçimi Uygulamaları: Bilgi Ve İletişim Teknolojileri Perspektifli Kritik Bakış. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 7(2), 362-378.
  • Konys, A. (2019). Green supplier selection criteria: from a literature review to a comprehensive knowledge base. Sustainability, 11(15), 4208.
  • Liu, J., Dıng, F.Y. ve Lall, V. (2000). Using Data Envelopment Analysis to Compare Suppliers for Supplier Selection and Performance Improvement, Supply Chain Management, 5(3), s.143–150.
  • Maji, P.K, Kumar, B., Ranjit. R. ve Akhil R. (2001). Fuzzy Soft Sets, Journal Of Fuzzy Mathematics, 9(3), 589-602.
  • Maji, P.K., Roy, A.R. ve Biswas, R. (2002). An Application Of Soft Sets In A Decision Making Problem, Computers & Mathematics With Applications, 44(8-9), 1077-1083.
  • Molodtsov, D. (1999). Soft Set Theory—First Results, Computers & Mathematics with Applications, 37(4-5), 19-31.
  • Özdemir, A. (2010). Ürün Grupları Temelinde Tedarikçi Seçim Probleminin Ele Alınması ve Analitik Hiyerarşi Süreci ile Çözümlenmesi. Afyon Kocatepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 12(1), 55-84.
  • Pi, W. N., & Low, C. (2006). Supplier evaluation and selection via Taguchi loss functions and an AHP. The International Journal of Advanced Manufacturing Technology, 27(5-6), 625-630.
  • Pitchipoo, P., Venkumar, P. ve Rajakarunakaran, S. (2015). Grey Decision Model for Supplier Evaluation and Selection in Process Industry: A Comparative Perspective, International Journal of Advanced Manufacturing Technology, 76, s. 2059-2069.
  • Prahinski, C., & Benton, W. C. (2004). Supplier evaluations: communication strategies to improve supplier performance. Journal of operations management, 22(1), 39-62.
  • Rahaman, F. J. (2017). A Qualitative Study into the Supplier Selection Decision-Making Process in the Malaysian SME Manufacturing Industry, (Doctoral dissertation, University of Westminster).
  • Roy, A.R. ve Maji, P.K. (2007). A Fuzzy Soft Set Theoretic Approach To Decision Making Problems, Journal of Computational and Applied Mathematics, 203(2), 412-418.
  • Soner, S., & Önüt, S. (2006). Multi-criteria supplier selection: An ELECTRE-AHP application. Sigma, 4, 110-120.
  • Şevkli, M. (2010). An Application Of The Fuzzy ELECTRE Method for Supplier Selection, International Journal of Production Research, 48(12), s.3393-3405.
  • Tam, M.C.Y. ve Tummala, V.M.R., (2001). An Application of The AHP in Vendor Selection of A Telecommunications System, Omega, 29(2), s.171-182.
  • Tan, K. C. (2001). A Framework of Supply Chain Management Literature. European Journal of Purchasing & Supply Management, 7(1), 39-48.
  • Wang, G., Huang, S.H. ve Dismukes, J.P. (2004). Product-Driven Supply Chain Selection Using Integrated Multi-Criteria Decision-Making Methodology, International Journal of Production Economics, 91(1), s.1-15.
  • Ward, P. T., & Duray, R. (2000). Manufacturing strategy in context: environment, competitive strategy and manufacturing strategy. Journal of operations management, 18(2), 123-138.
  • Weber, C.A., Current, J. ve Desai, A. (2000). An Optimization Approach to Determining The Number of Vendors to Employ. Supply Chain Management: An International Journal, 5(2), s.90-98.
  • Zadeh, L.A. (1965). Fuzzy Sets, Information And Control, 8(3), 338-353.
Elektronik Sosyal Bilimler Dergisi-Cover
  • ISSN: 1304-0278
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2002
  • Yayıncı: Cahit AYDEMİR