Ultra-Wide-Band Microstrip Patch Antenna Design for Breast Cancer Detection

Ultra-Wide-Band Microstrip Patch Antenna Design for Breast Cancer Detection

In this paper, a novel design for an ultra-wide-band (UWB) microstrip antenna with enhanced bandwidth for early detection of breast cancer has been proposed. It has been designed using CST software, which is a 3D analysis software package for electromagnetic components and systems design, analysis, and optimization. FR-4 has been used as a substrate, with dimensions of 60 × 70 mm, having a circular patch with a defected ground structure to reach the desired outcomes. The antenna has a peak gain of 4.431 dBi and works between 1.6 GHz and 10 GHz, which gives a bandwidth of 8.4 GHz with an average of –15 dB. The result of the simulation is presented in terms of radiation pattern, bandwidth, and return loss, and the validation of the proposed work is presented by the gain and the efficiency. A breast phantom model has been designed containing a tumor placed in a specific location, This, when combined with the kinetics of contrast medium propagation in various tissues, may effectively simulate normal breast tissue. The cancerous tumor is detected using specific absorption rate (SAR) analysis. The SAR is the rate of energy absorption in a tissue and is measured in W/kg. The SAR results are a maximum at the coordinates (1.085, 9.47273, 32.25), close to the actual location of the tumor at (0, 10, 40) The results display the ability to detect the tumor inside the breast and to reveal its location with high accuracy, and the antenna radiation meet the SAR standards.

___

  • 1. Y. Kuwahara, K. Suzuki, H. Horie, and H. Hatano, “Conformal array antenna with the aspirator for the microwave mammography,” in IEEE Antennas Propag. Soc. Int. Symp., 2010, pp. 10–13. [CrossRef]
  • 2. F. F. Ting, K. S. Sim, and Y. Lee, “Three-dimensional model reconstruction using surface interpolation with the interfacing of Hermite surface for breast cancer MRI imaging system,” in Int. Conf. Robot. Autom. Sci. (ICORAS), 2016, pp. 1–5. [CrossRef]
  • 3. C. Keatmanee, S. S. Makhanov, K. Kotani, W. Lohitvisate, and S. S. Thongvigitmanee, “Automatic initialization for active contour model in breast cancer detection utilizing conventional ultrasound and Color Doppler,” in Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2017, pp. 3248–3251. [CrossRef]
  • 4. C. A. Balanis, Antenna Theory Analysis and Design, 3rd ed. Hoboken, NJ, USA: Wiley, 2005.
  • 5. K. Nahalingam and S. K. Sharma, “An investigation on microwave breast cancer detection by ultra-widebandwidth (UWB) microstrip slot antennas,” in IEEE Int. Symp. Antennas Propag. (APSURSI), 2011, vol. 1, pp. 3385–3388. [CrossRef]
  • 6. R. M. Shubair and H. Elayan, “In vivo wireless body communications: State-of-the-art and future directions,” in Loughborough Antennas Propag. Conf. (LAPC), 2015, pp. 1–5. [CrossRef]
  • 7. H. Elayan, R. M. Shubair, J. M. Jornet, and P. Johari, “Terahertz channel model and link budget analysis for intrabody nanoscale communication,” IEEE Trans. Nanobiosci., vol. 16, no. 6, pp. 491–503, 2017.
  • 8. X. Li, E. J. Bond, B. D. Van Veen, and S. C. Hagness, “An overview of ultrawideband microwave imaging via space-time beamforming for earlystage breast-cancer detection,” IEEE Antennas Propag. Mag., vol. 47, no. 1, pp. 19–34, 2005. [CrossRef]
  • 9. M. M. Shirkolaei, “Wideband linear microstrip array antenna with high efficiency and low side lobe level,” Int. J. RF Microw. Comput. Aid. Eng., vol. 30, no. 11. [CrossRef]
  • 10. M. Alibakhshikenari, B. S. Virdee, and E. Limiti, “Wideband planar array antenna based on SCRLH-TL for airborne synthetic aperture radar application,” J. Electromagn. Waves Appl., vol. 32, no. 12, pp. 1586–1599, 2018. [CrossRef]
  • 11. A. A. Althuwayb, “Enhanced radiation gain and efficiency of a metamaterial‐inspired wideband microstrip antenna using substrate integrated waveguide technology for sub‐6 GHz wireless communication systems,” Microw. Opt. Technol. Lett., vol. 63, no. 7, 1892–1898, 2021. [CrossRef]
  • 12. M. Alibakhshikenari et al., “A comprehensive survey of “metamaterial transmission-line based antennas: Design, challenges, and applications,” IEEE Access, vol. 8, pp. 144778–144808, 2020. [CrossRef]
  • 13. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, “Super-wide impedance bandwidth planar antenna for microwave and millimeter-wave applications,” Sensors, vol. 19, no. 10, p. 2306, 2019.
  • 14. M. Alibakhshikenari, F. Babaeian, B. S. Virdee, S. Aissa, L. Azpilicueta, C. H. See, A. A. Athuwayb, I. Huynen, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, “A comprehensive survey on various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems,” IEEE Access, vol. 8, pp. 192965–193004, 2020. [CrossRef]
  • 15. M. Alibakhshikenari, B. S. Virdee, P. Shukla, C. H. See, R. A. Abd-Alhameed, F. Falcone, K. Quazzane, and E. Limiti, “Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems,” IET Microwaves Antennas Propag., vol. 14, no. 3, 183–188, 2020. [CrossRef]
  • 16. H. Elayan, R. M. Shubair, and A. Kiourti, “Wireless sensors for medical applications: Current status and future challenges,” in 11th Eur. Conf. IEEE Antennas Propag. (EUCAP), 2017, pp. 2478–2482.
  • 17. H. Elayan and R. M. Shubair, “On channel characterization in human body communication for medical monitoring systems,” in 17th Int. Symp. IEEE Antenna Tech. Appl. Electromagn. (ANTEM), 2016, pp. 1–2.
  • 18. H. Elayan, R. M. Shubair, A. Alomainy, and K. Yang, “In-vivo terahertz em channel characterization for nano-communications in WBANs,” in IEEE Int. Symp. IEEE Antennas Propag. (APSURSI), 2016, pp. 979–980.
  • 19. H. Elayan, R. M. Shubair, and J. M. Jornet, “Bio-electromagnetic THz propagation modeling for in-vivo wireless nanosensor networks,” in 11th Eur. Conf. IEEE Antennas Propag. (EUCAP), 2017, pp. 426–430.
  • 20. H. Elayan, C. Stefanini, R. M. Shubair, and J. M. Jornet, “End-to-end noise model for intra-body terahertz nanoscale communication,” IEEE Trans. Nanobioscience, vol. 17, no. 4, pp. 464–473, 2018.
  • 21. H. Elayan, P. Johari, R. M. Shubair, and J. M. Jornet, “Photothermal modeling and analysis of intrabody terahertz nanoscale communication,” IEEE Trans. Nanobiosci., vol. 16, no. 8, pp. 755–763, 2017.
  • 22. H. Elayan, R. M. Shubair, J. M. Jornet, and R. Mittra, “Multi-layer intrabody terahertz wave propagation model for nanobiosensing applications,” Nano Commun. Netw., vol. 14, pp. 9–15, 2017.
  • 23. H. Elayan, R. M. Shubair, and N. Almoosa, “In vivo communication in wireless body area networks,” in Information Innovation Technology in Smart Cities. Berlin, Germany: Springer, 2018, pp. 273–287.
  • 24. M. O. AlNabooda, R. M. Shubair, N. R. Rishani, and G. Aldabbagh, “Terahertz spectroscopy and imaging for the detection and identification of illicit drugs,” in Sensors - Networks Smart Emerg. Tech. (SENSET), 2017, pp. 1–4.
  • 25. E. C. Fear, P. M. Meaney, and M. A. Stuchly, “Microwaves for breast cancer detection?,” IEEE Potentials, vol. 22, no. 1, pp. 12–18, 2003.
  • 26. F. Alsharif and C. Kurnaz, “Wearable microstrip patch ultra wide band antenna for breast cancer detection,” in 41st Int. Conf. Telecommun. Signal Process. (TSP), Athens, 2018, pp. 1–5. [CrossRef]
  • 27. M. A. Afridi, “Microstrip patch antenna − designing at 2.4 GHz frequency,”Biological and Chemical Research,” Science Signpost Publishing, vol. 2015, p. 128–132, 2015.
  • 28. R. Garg, Microstrip Antenna Design Handbook.Boston, MA, USA: Artech House, 2011.
  • 29. M. M. Khan, A. K. M. Monsurul Alam, and R. H. Ashique, “A comparative study of rectangular and circular microstrip Fed Patch Antenna at 2.45 GHz,” Int. J. Sci. Eng. Res., vol. 5, no. 10, pp. 1028–1032, 2014.
  • 30. H. M. Lee and W. Choi, “Effect of partial ground plane removal on the radiation characteristics of a microstrip antenna,” Wirel. Eng. Technol., vol. 4, no. 1, pp. 5–12, 2013.
  • 31. D. Guha, S. Biswas, and Y. M. M. Antar, “Defected ground structure for microstrip antennas,” in Microstrip and Printed Antennas: New Trends, Techniques and Applications. Hoboken, NJ, USA: Wiley, 2010, ch. 12. [CrossRef]
  • 32. M. Miyakawa, S. Takata, and K. Inotsume, “Development of non-uniform breast phantom and its microwave imaging for tumor detection by CPMCT,” in Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Minneapolis, MN, USA, 2009, pp. 2723–2726. [CrossRef]
  • 33. J. Michałowska-Samonek, A. Miaskowski, and A. Wac-Włodarczyk, “Numerical analysis of high frequency electromagnetic field distribution and specific absorption rate in realistic breast models,” Electrotech. Rev., vol. 88, no. 12b, pp. 97–99, 2012.
  • 34. M. Alibakhshikenari, B. S. Virdee, P. Shukla, N. O. Parchin, L. Azpilicueta, C. H. See, R. A. Abd-Alhameed, F. Falcone, I. Huynen, T. A. Denidni, and E. Limiti, “Metamaterial-inspired antenna array for application in microwave breast imaging systems for tumor detection,” IEEE Access, vol. 8, pp. 174667–174678, 2020. [CrossRef]
  • 35. F. Tasnim, F. Jannat, S. Kibria, M. S. Alam, T. Ahsan, T. Alam, R. Azim, and M. T. Islam, “Electromagnetic performances analysis of a Microwave Imaging System(MIS) for breast tumor detection,” Int. Conf. Innov. Sci. Eng. Technol. (ICISET), 2018, pp. 442–446. [CrossRef]
  • 36. A. A. Althuwayb, “On-chip antenna design using the concepts of metamaterial and SIW principles applicable to terahertz integrated circuits operating over 0.6–0.622 THz,” Int. J. Antennas Propag., vol. 2020, no. 6653095, 2020. [CrossRef]
  • 37. A. Dewiani, E. Amir, I. Palantei, S. Areni, and A. Achmad, “Movement effect on electrical properties of UWB microwave antenna during breast tumor diagnostic scanning,” IEEE Asia Pac. Conf. Wirel. Mob. (APWiMob), 2015, pp. 188–191. [CrossRef]
  • 38. F. M. Eltigani, M. A. A. Yahya, and M. E. Osman, “Microwave imaging system for early detection of breast cancer,” in Int. Conf. Commun. Control Comput. Electron. Eng. (ICCCCEE), 2017, pp. 1–5. [CrossRef]
Electrica-Cover
  • ISSN: 2619-9831
  • Başlangıç: 2001
  • Yayıncı: İstanbul Üniversitesi-Cerrahpaşa
Sayıdaki Diğer Makaleler

Current Reconstruction for PMSM Drives Using a DC-Link Single Current Sensor

Mustafa AKTAŞ, Barış ÇAVUŞ

Low Power Square Root Carry Select Adder Using AVLS-TSPC-Based D Flip-Flop

Samana Hanumanth MANAGOLİ, Premananda Belegahalli SİDDAİAH, Nikhil Kiran JAYANTHİ

Quasi ZSI-Fed Sliding Mode Control-based Indirect Field-Oriented Control of IM Using PI-Fuzzy Logic Speed Controller

Rekha TİDKE, Anandita CHOWDHURY

Using a Turn of a Meander Microstrip Line for ESD Protection

Talgat R. GAZİZOV, Alexander V. NOSOV, Roman S. SUROVTSEV

Estimation of Induction Motor Equivalent Circuit Parameters from Manufacturer’s Datasheet by Particle Swarm Optimization Algorithm for Variable Frequency Drives

Mehmet Onur GÜLBAHÇE, Muhammed Emin KARAASLAN

Additional Pulses in the Time Response of a Modal Filter on a Double-Sided Printed Circuit Board

Maria A. SAMOYLİCHENKO, Talgat R. GAZİZOV

Design and Analysis of Printed Monopole Antenna With and Without CSRR in the Ground Plane for GSM 900 and Wi-Fi

Prasanna G. PAGA, H. C. NAGARAJ, K. S. SHASHİDHARA, Veerendra DAKULAGI, Kim Ho YEAP

Analysis of Wind Speed Data Using Finsler, Weibull, and Rayleigh Distribution Functions

Emrah DOKUR, Salim CEYHAN, Mehmet KURBAN

Minimized Total Harmonic Distortion of a Multi-level Inverter of a Wind Power Conversion Chain Synchronized to the Grid-LCL Filter Optimization and Third Harmonic Cancellation

Wijdane El MAATAOUİ, Mustapha MABROUKİ, Soukaina El DAOUDİ, Loubna LAZRAK

Robust Position Control of a Levitating Ball via a Backstepping Controller

Türker TÜRKER, Fatih ADIGÜZEL